Parameter Estimation for Frequency Responses

Chapter

Abstract

This chapter presents parameter estimation methods which use the non-parametric frequency response function as an intermediatemodel. Using this intermediatemodel can provide many advantages: One can use methods such as the orthogonal correlation to record the frequency response function even under very adverse (noise) conditions. Furthermore, the experimental data are in most cases condensed by smoothing the frequency response function before the parameter estimation method is applied. Also, the non-parametric frequency response function can give hints on the model order to choose, the presence of a dead-time, resonances, and so forth.

Keywords

Frequency Response Dead Time Frequency Response Function Intermediate Model Parameter Estimation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gillberg J, Ljung L (2010) Frequency domain identification of continuous-time output error models, Part I: Uniformly sampled data and frequency function approximation. Automatica 46(1):1–10MATHCrossRefMathSciNetGoogle Scholar
  2. Isermann R (1992) Identifikation dynamischer Systeme: Besondere Methoden, Anwendungen (Vol 2). Springer, BerlinGoogle Scholar
  3. Juang JN (1994) Applied system identification. Prentice Hall, Englewood Cliffs, NJMATHGoogle Scholar
  4. Kammeyer KD, Kroschel K (2009) Digitale Signalverarbeitung: Filterung und Spektralanalyse mit MATLAB-Übungen, 7th edn. Teubner, WiesbadenGoogle Scholar
  5. Levy EC (1959) Complex curve fitting. IRE Trans Autom Control 4:37–43CrossRefGoogle Scholar
  6. Ljung L (1999) System identification: Theory for the user, 2nd edn. Prentice Hall Information and System Sciences Series, Prentice Hall PTR, Upper Saddle River, NJGoogle Scholar
  7. McKelvey T (2000) Frequency domain identification. In: Proccedings of the 12th IFAC Symposium on System Identification, Santa Barbara, CA, USAGoogle Scholar
  8. Pintelon R, Schoukens J (1997) Identification of continuous-time systems using arbitrary signals. Automatica 33(5):991–994MATHCrossRefMathSciNetGoogle Scholar
  9. Pintelon R, Schoukens J (2001) System identification: A frequency domain approach. IEEE Press, Piscataway, NJCrossRefGoogle Scholar
  10. Pintelon R, Guillaume P, Rolain Y, Schoukens J, van Hamme H (1994) Parametric identification of transfer functions in the frequency domain: A survey. IEEE Trans Autom Control 39(11):2245–2260MATHCrossRefGoogle Scholar
  11. Sawaragi V, Soeda T, Nakamizo T (1981) Classical methods and time series estimation. In: Trends and progress in system identification, Pergamon Press, OxfordGoogle Scholar
  12. Strobel H (1968) Systemanalyse mit determinierten Testsignalen. Verlag Technik, BerlinGoogle Scholar
  13. Strobel H (1975) Experimentelle Systemanalyse. Elektronisches Rechnen und Regeln, Akademie Verlag, BerlinGoogle Scholar
  14. Unbehauen H (2008) Regelungstechnik, 15th edn. Vieweg + Teubner, WiesbadenGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Technische Universität Darmstadt, Institut für AutomatisierungstechnikDarmstadtGermany

Personalised recommendations