Skip to main content

Funktionsrealisierung – Mechatronischer Elementarwandler

  • Chapter
  • First Online:
Systementwurf mechatronischer Systeme
  • 8013 Accesses

Zusammenfassung

Hintergrund Die funktionelle Schnittstelle zwischen Informationsverarbeitung in Form elektrischer Signale und der mechanischen Struktur in Form von Kräften und Momenten bzw. Bewegungsgrößen ist für ein mechatronisches Produkt von zentraler Bedeutung. Die bidirektionale Energiewandlung zwischen elektrischer und mechanischer Energie schafft eine Schlüsselvoraussetzung für die Hauptproduktaufgabe „gezieltes Bewegen“. Die heute zur Verfügung stehenden vielfältigen physikalischen Wandlungsprinzipien erlauben zudem eine funktionell wie konstruktiv kompakte Integration in das mechatronische Produkt - mechatronischer Wandler. Für den Systementwurf ist neben dem Verständnis der Wandlungsprinzipien im Besonderen der Einfluss von Wandlerparametern auf das Übertragungsverhalten von Interesse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 5

  • Anderson E H, Hagood N W, Goodliffe J M (1992) Self-sensing piezoelectric actuation - Analysis and application to controlled structures Proceedings of the 33rd AIAA/ASME/ASC/AHS Structures,

    Google Scholar 

  • Structural Dynamics and Materials Conference Dallas, TX: 2141-2155

    Google Scholar 

  • Apostolyuk V (2006) Theory and Design of Micromechanical Vibratory Gyroscopes. In MEMS/NEMS Handbook, Techniques and Applications. C. T. Leondes, Springer. 1: 173-195

    Google Scholar 

  • Bronstein I N, Semendjajew K A, Musiol G, Mühlig H (2005) Taschenbuch der Mathematik, Verlag Harri Deutsch

    Google Scholar 

  • Brusa E, Carabelli S, Carraro F, Tonoli A (1998) Electromechanical Tuning of Self-Sensing Piezoelectric Transducers. Journal of Intelligent Material Systems and Structures 9(3): 198-209

    Article  Google Scholar 

  • Chan K, Liao W (2009) Self-sensing actuators with passive damping for adaptive vibration control of hard disk drives. Microsystem Technologies 15(3): 355-366

    Article  Google Scholar 

  • DIN (1988) Leitfaden zur Bestimmung der dynamischen Eigenschaften von piezoelektrischer Keramik mit hohem elektromechanischem Koppelfaktor; Identisch mit IEC 60483, Ausgabe 1976. DIN IEC 60483: 1988-04. DIN

    Google Scholar 

  • Dosch J J, Inman D J, Garcia E (1992) A Self-Sensing Piezoelectric Actuator for Collocated Control. Journal of Intelligent Material Systems and Structures 3(1): 166-185

    Article  Google Scholar 

  • Fleming A J, Behrens S, Moheimani S O R (2002) Optimization and implementation of multimode piezoelectric shunt damping systems. Mechatronics, IEEE/ASME Transactions on 7(1): 87-94

    Article  Google Scholar 

  • Föllinger O (1994) Regelungstechnik, Einführung in die Methoden und ihre Anwendung, Hüthig Verlag

    Google Scholar 

  • Funato H, Kawamura A, Kamiyama K (1997) Realization of negative inductance using variable active-passive reactance (VAPAR). Power Electronics, IEEE Transactions on 12(4): 589-596

    Article  Google Scholar 

  • Hagood N W, Flotow A v (1991) Damping of structural vibrations with piezoelectric materials and passive electrical networks. Journal of Sound and Vibration 146(2): 243-268

    Article  Google Scholar 

  • Hartog J P D (1947) Mechanical Vibrations, McGraw-Hill

    Google Scholar 

  • Hollkamp J J (1994) Multimodal Passive Vibration Suppression with Piezoelectric Materials and Resonant Shunts. Journal of Intelligent Material Systems and Structures 5(1): 49-57

    Article  Google Scholar 

  • IEEE (1988) IEEE standard on piezoelectricity. ANSI/IEEE Std 176-1987

    Google Scholar 

  • Karnopp D C, Margolis D L, Rosenberg R C (2006) System dynamics: modeling and simulation of mechatronic systems, John Wiley & Sons, Inc.

    Google Scholar 

  • Kuypers F (1997) Klassische Mechanik, Wiley-VCH

    Google Scholar 

  • Lehr E (1930) Untersuchung der erzwungenen Koppelschwingungen eines elektromechanischen Systems unter Verwendung eines graphischen Verfahrens. Archiv für Elektrotechnik XXIV.: 330-348

    Article  Google Scholar 

  • Lorenz R D (1999) Advances in electric drive control. Electric Machines and Drives, 1999. International Conference IEMD '99: 9-16

    Google Scholar 

  • Lunze J (2008) Regelungstechnik 2: Mehrgrößensysteme, Digitale Regelung, Springer

    Google Scholar 

  • Lunze J (2009) Regelungstechnik 1: Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen, Springer

    Google Scholar 

  • Lunze K (1991) Einführung in die Elektrotechnik, Verlag Technik Berlin

    Google Scholar 

  • Marneffe B d, Preumont A (2008) Vibration damping with negative capacitance shunts: theory and experiment. Smart Materials and Structures 17(035015): 9

    Google Scholar 

  • Mateu L, Moll F (2007) System-Level Simulation of a Self-Powered Sensor with Piezoelectric Energy Harvesting. Sensor Technologies and Applications, 2007. SensorComm 2007. International Conference on: 399-404

    Google Scholar 

  • Mohammed A (1966) Expressions for the Electromechanical Coupling Factor in Terms of Critical Frequencies. The Journal of the Acoustical Society of America 39(2): 289-293

    Article  MathSciNet  Google Scholar 

  • Moheimani S O R (2003) A survey of recent innovations in vibration damping and control using shunted piezoelectric transducers. Control Systems Technology, IEEE Transactions on 11(4): 482-494

    Article  Google Scholar 

  • Moheimani S O R, Behrens S (2004) Multimode piezoelectric shunt damping with a highly resonant impedance. Control Systems Technology, IEEE Transactions on 12(3): 484-491

    Article  Google Scholar 

  • Neubauer M, Oleskiewicz R, Popp K (2005) Comparison of Damping Performance of Tuned Mass Dampers and Shunted Piezo Elements. PAMM 5(1): 117-118

    Article  Google Scholar 

  • Oleskiewicz R, Neubauer M, Krzyzynski T, Popp K (2005) Synthetic Impedance Circuits in Semi-Passive Vibration Control with Piezo-Ceramics - Efficiency and Limitations. PAMM 5(1): 121-122

    Article  Google Scholar 

  • Paulitsch C, Gardonio P, Elliott S J (2006) Active vibration damping using self-sensing, electrodynamic actuators. Smart Materials and Structures 15: 499–508

    Article  Google Scholar 

  • Philippow E (2000) Grundlagen der Elektrotechnik, Verlag Technik Berlin

    Google Scholar 

  • Preumont A (2002) Vibration Control of Active Structures - An Introduction, Kluwer Academic Publishers

    Google Scholar 

  • Preumont A (2006) Mechatronics, Dynamics of Electromechanical and Piezoelectric Systems, Springer

    Google Scholar 

  • Priya S (2007) Advances in energy harvesting using low profile piezoelectric transducers. Journal of Electroceramics 19(1): 167-184

    Article  MathSciNet  Google Scholar 

  • Reinschke K, Schwarz P (1976) Verfahren zur rechnergestützten Analyse linearer Netzwerke, Akademie Verlag Berlin

    MATH  Google Scholar 

  • Schenk H, Durr P, Haase T, Kunze D, Sobe U, Lakner H, Kuck H (2000) Large deflection micromechanical scanning mirrors for linear scans and pattern generation. Selected Topics in Quantum Electronics, IEEE Journal of 6(5): 715-722

    Article  Google Scholar 

  • Schuster T, Sandner T, Lakner H (2006) Investigations on an Integrated Optical Position Detection of Micromachined Scanning Mirrors. Photonics and Microsystems, 2006 International Students and Young Scientists Workshop: 55-58

    Google Scholar 

  • Senturia S D (2001) Microsystem Design, Kluwer Academic Publishers

    Google Scholar 

  • Shu Y C, Lien I C (2006) Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures 15: 1499–1512

    Article  Google Scholar 

  • Tilmans H A C (1996) Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems. Journal of Micromechanics and Microengineering(6): 157–176

    Google Scholar 

  • Twiefel J, Richter B, Sattel T, Wallaschek J (2008) Power output estimation and experimental validation for piezoelectric energy harvesting systems. Journal of Electroceramics 20(3): 203-208

    Article  Google Scholar 

  • VDI (2006) Schwingungsdämpfer und Schwingungstilger - Schwingungstilger und Schwingungstilgung. V. D. I. VDI. 3833 Blatt 2::2006-12

    Google Scholar 

  • Vischer D, Bleuler H (1993) Self-sensing active magnetic levitation. Magnetics, IEEE Transactions on 29(2): 1276-1281

    Article  Google Scholar 

  • Ward J K, Behrens S (2008) Adaptive learning algorithms for vibration energy harvesting. Smart Materials and Structures 17: 035025 (035029pp)

    Article  Google Scholar 

  • Yaralioglu G G, Ergun A S, Bayram B, Haeggstrom E, Khuri-Yakub B T (2003) Calculation and measurement of electromechanical coupling coefficient of capacitive micromachined ultrasonic transducers. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 50(4): 449-456

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Janschek .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Janschek, K. (2010). Funktionsrealisierung – Mechatronischer Elementarwandler. In: Systementwurf mechatronischer Systeme. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78877-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78877-5_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78876-8

  • Online ISBN: 978-3-540-78877-5

  • eBook Packages: Humanities, Social Science (German Language)

Publish with us

Policies and ethics