Skip to main content

Compression of Medical Images for Teleradiology

  • Chapter
Teleradiology
  • 828 Accesses

Abstract

Compression is necessary for storage and transmission of the large number of radiologic images in hospitals. Many lossless and lossy compression algorithms are available. Good lossy compression has statistically no observable difference from lossless compression. A study shows that lossy compression may be beneficial for diagnosis. Modeling provides better visualization and good lossy compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bilgin A, Zweig G, Marcellin MW (1998) Efficient lossless coding of medical image vol-umes using reversible integer wavelet transforms. In: Proceedings of data compression conference. IEEE Computer Society Press Los Alamitos, CA , USA. pp 428-437

    Google Scholar 

  2. Chen F, Sahni S, Vemuri BC (1999) Efficient algorithms for lossless compression of 2D/3D images. VISUAL’99. Lecture Notes in Computer Science, vol 1614. Springer, Heidelberg, pp 681-688

    Google Scholar 

  3. Choong MK (2004) Digitisation, lossy compression and visualisation in cost-effective telehealth environment. Master of Engineering Science thesis, Multimedia University, Melaka, Malaysia

    Google Scholar 

  4. Choong M-K, Logeswaran R, Bister M (2006) Improving diagnostic quality of MR images through controlled lossy compression using SPIHT. J Med Sys 30(3):139-143

    Article  Google Scholar 

  5. Choong M-K, Logeswaran R, Bister M (2007) Cost-effective handling of digital medical images in the telemedicine environment. Intl J Med Inform 76(9):646-654

    Article  Google Scholar 

  6. Chung S-H, Logeswaran R (2005) Mobile agents in mobile telemedicine—replication agent and snapshot agent approach to overcome wireless bandwidth limitation. Multi-media Cyberscape J 3(4):41-45

    Google Scholar 

  7. Clunie DA (2002) NEMA DICOM status update—DICOM compression 2002. SPIE: medical imaging 2002. International Society of Optical Engineering, San Diego

    Google Scholar 

  8. Egmont-Petersen M, de Ridder D, Handels H (2002) Image processing with neural net-works—a review. Pattern Recognit 35:2279-2301

    Article  Google Scholar 

  9. Lemke HU, Osteaux M (eds) (1993) Picture archiving and communication systems and digital radiology. Eur J Radiol 17(1):1-2

    Google Scholar 

  10. Lo S-C, Kim M-B, Li H, Krasner BH, Freedman MT, Mun SK (1994) Radiological image compression: image characteristics and clinical considerations. Proc SPIE 2164:276-281

    Article  Google Scholar 

  11. Logeswaran R (2007) A computer-aided multi-disease diagnostic system using MRCP. J Digit Imaging. doi:10.1007/s10278-007-9029-4

    Google Scholar 

  12. Logeswaran R, Eswaran C (2006) Model-based compression for 3D medical images stored in the DICOM format. J Med Sys 30(2):133-138

    Article  Google Scholar 

  13. Marcelo A, Fontelo P, Farolan M, Cualing H (2000) Effect of image compression on telepathology: a randomized clinical trial. Arch Pathol Lab Med 124(11):1653-1656

    CAS  PubMed  Google Scholar 

  14. NEMA (1996) Digital imaging and communications in medicine (DICOM). National Electrical Manufacturers’ Association, Rosslyn, PS 3.1-1996-3.13-1996

    Google Scholar 

  15. Perlmutter SM, Cosman PC, Gray RM et al (1997) Image quality in lossy compressed digital mammograms. Signal Process 59(2):189-210

    Article  Google Scholar 

  16. Said A, Pearlman WA (1996) A new, fast, and efficient image codec based on set partition-ing in hierarchical trees. IEEE Trans Circuits Syst Video Technol 6(3):243-250

    Article  Google Scholar 

  17. Seward J. Bzip2. http://www.bzip.org/

  18. Sharpiro JM (1993) Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans Signal Process 41(12):3445-3462

    Article  Google Scholar 

  19. Wong S, Zaremba L, Gooden D, Huang HK (1996) Radiologic image compression—a review. Proc IEEE 83(2):194-219

    Article  Google Scholar 

  20. Wu X, Menon N (1996) CALIC—a context based adaptive lossless image codec. In: Proceedings of international conference on acoustics, speech, and signal processing. IEEE Signal Processing Society Press ISBN: 0780331923 pp 1890-1893

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Logeswaran, R. (2008). Compression of Medical Images for Teleradiology. In: Kumar, S., Krupinski, E.A. (eds) Teleradiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78871-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78871-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78870-6

  • Online ISBN: 978-3-540-78871-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics