Theory of the Linear Pyrolysis of Condensed Materials

  • Alexander S. Shteinberg

Abstract

Linear pyrolysis is the one-dimensional propagation of the reaction front in thermally decomposing condensed compounds. Numerous energetic materials and their components (polymer binders and oxidizers of solid rocket propellants, homogeneous blasting powders, explosives and others) decompose via linear pyrolysis under intense heating and burning. A theory of linear pyrolysis including analytical expressions relating the rate of linear pyrolysis (burning) to kinetic constants for the decomposition that occurs in a thin layer of the compound near its hot surface is presented. The conclusions of this theory are of significant importance to our understanding of processes such as the burning of solid rocket propellants and explosives, the ablation of space vehicle heat shielding, etc.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Schultz RD, Dekker AO (1955) In: Proceedings of the 5th Symposium on Combustion. Reinhold, New YorkGoogle Scholar
  2. 2.
    Beckstead MW (2000) In: 29th JANNAF Propellant Development & Characterisation Meeting, Cocoa Beach, FL, USA, 8–12 May 2000Google Scholar
  3. 3.
    Miller RS (1996) In: Brill TB, Russel TP, Tao WC, Wardle RB (eds) Decomposition, combustion, and detonation chemistry of energetic materials. Materials Research Society, Pittsburgh, PA, p 3Google Scholar
  4. 4.
    Bakhman NN, Belyaev AF (1967) Combustion of heterogeneous condensed systems. Nauka, MoscowGoogle Scholar
  5. 5.
    Shteinberg AS (1980) In: Merzhanov AG (ed) Heat and mass exchange in combustion processes. Nauka, Chernogolovka, p 85Google Scholar
  6. 6.
    Averson AE, Barzykin VV, Merzhanov AG (1965) J Eng Phys Thermophys 2:172Google Scholar
  7. 7.
    Shteinberg AS, Sokolova NA (1964) Dokl Phys Chem 158:889Google Scholar
  8. 8.
    Frank-Kamenetsky DA (1969) Diffusion and heat transfer in chemical kinetics. Plenum, New YorkGoogle Scholar
  9. 9.
    Merzhanov AG, Khaikin BI (1988) Progr Energy Combust Sci 14:1CrossRefGoogle Scholar
  10. 10.
    Barzykin VV, Khudyaev SI (1956) Dokl Phys Chem 169:547Google Scholar
  11. 11.
    Mikhelson VA (1930) Collected works, vol 1. Novyi Agronom, MoscowGoogle Scholar
  12. 12.
    Zel’dovich JaB, Frank-Kamenetsky DA (1938) Dokl Akad Nauk SSSR 19:693Google Scholar
  13. 13.
    Mikheev MA (1956) Fundamentals of heat transfer. GEI, MoscowGoogle Scholar
  14. 14.
    Merzhanov AG, Dubovitsky FI (1959) Dokl Phys Chem 129:917Google Scholar
  15. 15.
    Merzhanov AG (1960) Dokl Akad Nauk SSSR 6:1439Google Scholar
  16. 16.
    Manelis GB, Strunin VA (1972) In: Stesik LN (ed) Combustion and explosion. Nauka, Moscow, p 53Google Scholar
  17. 17.
    Manelis GB, Strunin VA (1971) Combust Flame 17:69CrossRefGoogle Scholar
  18. 18.
    Strunin VA (1965) Rus J Phys Chem 39:222Google Scholar
  19. 19.
    Cantrell RH (1963) AIAAJ 1:1544CrossRefGoogle Scholar
  20. 20.
    Chaiken RF (1962) J Chem Phys 37:2311CrossRefGoogle Scholar
  21. 21.
    Chudnovsky AF (1960) Heat transfer in disperse media. Nauka, MoscowGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alexander S. Shteinberg
    • 1
  1. 1.BerkeleyUSA

Personalised recommendations