Skip to main content

Part of the book series: Mathematics in Industry ((TECMI,volume 13))

In many fields of science and engineering, like fluid or structural mechanics and electric circuit design, large–scale dynamical systems need to be simulated, optimized or controlled. They are often given by discretizations of systems of nonlinear partial differential equations yielding high–dimensional discrete phase spaces. for this reason during the last decades research was mainly focused on the development of sophisticated analytical and numerical tools to understand the overall system behavior. Not surprisingly, the number of degrees of freedom for simulations keptpace with the increasing computing power. But when it comes to optimal design or control the problems are in general to large to be tackled with standard techniques. Hence, there is a strong need for model reduction techniques to reduce the computational costs and storage requirements. They should yield low–dimensional approximations for the full high–dimensional dynamical system, which reproduce the characteristic dynamics of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Konstantin Afanasiev and Michael Hinze. Adaptive control of a wake flow using proper orthogonal decomposition. In Shape optimization and optimal design (Cambridge, 1999), volume 216 of Lecture Notes in Pure and Appl. Math., pages 317–332. Dekker, New York, 2001.

    Google Scholar 

  2. Vidal R. Algazi and David J. Sakrison. On the optimality of the Karhunen-Loève expansion. IEEE Trans. Information Theory, IT-15:319–320, 1969.

    Google Scholar 

  3. Jeanne A. Atwell and Belinda B. King. Reduced order controllers for spatially distributed systems via proper orthogonal decomposition. SIAM J. Sci. Comput., 26(1):128–151, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  4. Nadine Aubry, Philip Holmes, John L. Lumley, and Emily Stone. The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech., 192:115–173, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  5. Nadine Aubry, Wen Yu Lian, and Edriss S. Titi. Preserving symmetries in the proper orthogonal decomposition. SIAM J. Sci. Comput., 14(2):483–505, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. T. Banks, Michele L. Joyner, Buzz Wincheski, and William P. Winfree. Nondestructive evaluation using a reduced-order computational methodology. Inverse Problems, 16(4):929–945, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  7. Gal Berkooz and Edriss S. Titi. Galerkin projections and the proper orthogonal decomposition for equivariant equations. Phys. Lett. A, 174(1-2):94–102, 1993.

    Article  MathSciNet  Google Scholar 

  8. Marco Fahl and Ekkehard W. Sachs. Reduced order modelling approaches to PDE-constrained optimization based on proper orthogonal decomposition. In Large-scale PDE-constrained optimization (Santa Fe, NM, 2001), volume 30 of Lect. Notes Comput. Sci. Eng., pages 268–280. Springer, Berlin, 2003.

    Google Scholar 

  9. Keinosuke Fukunaga. Introduction to statistical pattern recognition. Computer Science and Scientific Computing. Academic Press Inc., Boston, MA, second edition, 1990.

    MATH  Google Scholar 

  10. M. Hinze and K. Kunisch. Three control methods for time - dependent fluid flow. Flow, Turbulence and Combustion, 65:273–298, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Hinze and S. Volkwein. Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. Technical Report IMA02-05, KFU Graz, 2005.

    Google Scholar 

  12. M. Hinze and S. Volkwein. Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: Error estimates and suboptimal control. In D. Sorensen, P. Benner, V. Mehrmann, editor, Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational and Applied Mathematics, pages 261–306. 2005.

    Google Scholar 

  13. H. Hoetelling. Simplified calculation of principal component analysis. Psychometrica, 1:27–35, 1935.

    Article  Google Scholar 

  14. Philip Holmes, John L. Lumley, and Gal Berkooz. Turbulence, coherent structures, dynamical systems and symmetry. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge, 1996.

    MATH  Google Scholar 

  15. Kari Karhunen. Zur Spektraltheorie stochastischer Prozesse. Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys., 1946(34):7, 1946.

    MathSciNet  Google Scholar 

  16. K. Kunisch and S. Volkwein. Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition. J. Optim. Theory Appl., 102(2):345–371, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  17. K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math., 90(1):117–148, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  18. K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal., 40(2):492–515, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  19. K. Kunisch, S. Volkwein, and L. Xie. HJB-POD-based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst., 3(4):701–722, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  20. Sanjay Lall, Petr Krysl, and Jerrold E. Marsden. Structure-preserving model reduction for mechanical systems. Phys. D, 184(1-4):304–318, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  21. Sanjay Lall, Jerrold E. Marsden, and Sonja Glavaški. A subspace approach to balanced truncation for model reduction of nonlinear control systems. Internat. J. Robust Nonlinear Control, 12(6):519–535, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Loeve. Fonctions aleatoire de second ordre. Revue, 48:195–206, 1946.

    MathSciNet  Google Scholar 

  23. U. Maas and S. B. Pope. Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in compositional space. Combust. Flame, 88:239–264, 1992.

    Article  Google Scholar 

  24. H.G. Matthies and M. Meyer. Nonlinear galerkin methods for the model reduction of nonlinear dynamical systems. Computers & Structures, 81(12), 2003.

    Google Scholar 

  25. M. Meyer and H.G. Matthies. Efficient model reduction in nonlinear dynamics using the karhunen-love expansion and dual-weighted-residual methods. Computational Mechanics, 31(1+2), 2003.

    Google Scholar 

  26. M.F. Modest. Radiative Heat Transfer. McGraw-Hill, 1993.

    Google Scholar 

  27. B.C. Moore. Principal component analysis in linear systems: Controlability, observability and model reduction. IEEE Trans. Automat. Contr., 26(1), 1981.

    Google Scholar 

  28. K. Pearson. On lines and planes of closest to points in space. Philosophical Magazine, 2:609–629, 1901.

    Google Scholar 

  29. Muruhan Rathinam and Linda R. Petzold. Dynamic iteration using reduced order models: a method for simulation of large scale modular systems. SIAM J. Numer. Anal., 40(4):1446–1474, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  30. Muruhan Rathinam and Linda R. Petzold. A new look at proper orthogonal decomposition. SIAM J. Numer. Anal., 41(5):1893–1925, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  31. S.S. Ravindran. Adaptive reduced-order controllers for a thermal flow system using proper orthogonal decomposition. SIAM J. Sci. Comput., 23(6):1924–1942, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  32. D. Rempfer. On dynamical systems obtained via Galerkin projections onto low-dimensional bases of eigenfunctions. In Fundamental problematic issues in turbulence (Monte Verita, 1998), Trends Math., pages 233–245. Birkhäuser, Basel, 1999.

    Google Scholar 

  33. Azriel Rosenfeld and Avinash C. Kak. Digital picture processing. Vol. 2. Computer Science and Applied Mathematics. Academic Press Inc., New York, second edition, 1982.

    Google Scholar 

  34. C.W. Rowley. Model reduction for fluids, using balanced proper orthogonal decomposition. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15(3):997–1013, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  35. Clarence W. Rowley, Tim Colonius, and Richard M. Murray. Model reduction for compressible flows using POD and Galerkin projection. Phys. D, 189(1-2):115–129, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  36. Lawrence Sirovich. Turbulence and the dynamics of coherent structures. I—III. Quart. Appl. Math., 45(3):561–590, 1987.

    Google Scholar 

  37. Karen Willcox and J. Peraire. Balanced model reduction via the proper orthogonal decomposition. AIAA, 40(11):2323–2330, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pinnau, R. (2008). Model Reduction via Proper Orthogonal Decomposition. In: Schilders, W.H.A., van der Vorst, H.A., Rommes, J. (eds) Model Order Reduction: Theory, Research Aspects and Applications. Mathematics in Industry, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78841-6_5

Download citation

Publish with us

Policies and ethics