Skip to main content

Bootstrapping the Interactome: Unsupervised Identification of Protein Complexes in Yeast

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2008)

Abstract

Protein interactions and complexes are major components of biological systems. Recent genome-wide applications of tandem affinity purification (TAP) in yeast have increased significantly the available information on such interactions. From these experiments, protein complexes were predicted with different approaches first from the individual experiments only and later from their combination. The resulting predictions showed surprisingly little agreement and all of the corresponding methods rely on additional training data. In this article, we present an unsupervised algorithm for the identification of protein complexes which is independent of the availability of additional complex information. Based on a bootstrap approach, we calculated intuitive confidence scores for interactions which are more accurate than previous scoring metrics. The complexes determined from this confidence network are of similar quality as the complexes identified by the best supervised approaches. Despite the similar quality of the latest predictions and our predictions, considerable differences are still observed between all of them. Nevertheless, the set of consistently identified complexes is more than four times as large as for the first two studies. Our results illustrate that meaningful and reliable complexes can be determined from the purification experiments alone. As a consequence, the approach presented in this article is easily applicable to large-scale TAP experiments for any organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Uetz, P., et al.: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000)

    Article  Google Scholar 

  2. Ito, T., et al.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001)

    Article  Google Scholar 

  3. Ho, Y., et al.: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002)

    Google Scholar 

  4. Gavin, A.-C., et al.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002)

    Article  Google Scholar 

  5. Gavin, A.-C., et al.: Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006)

    Article  Google Scholar 

  6. Krogan, N.J., et al.: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006)

    Article  Google Scholar 

  7. von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., Bork, P.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002)

    Article  Google Scholar 

  8. Pu, S., Vlasblom, J., Emili, A., Greenblatt, J., Wodak, S.J.: Identifying functional modules in the physical interactome of Saccharomyces cerevisiae. Proteomics 7, 944–960 (2007)

    Article  Google Scholar 

  9. Collins, S.R., et al.: Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol. Cell. Proteomics 6, 439–450 (2007)

    Google Scholar 

  10. Hart, G.T., Lee, I., Marcotte, E.: A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality. BMC Bioinformatics 8, 236 (2007)

    Article  Google Scholar 

  11. Mewes, H.W., et al.: MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Res. 32, 41–44 (2004)

    Article  Google Scholar 

  12. Aloy, P., et al.: Structure-based assembly of protein complexes in yeast. Science 303, 2026–2029 (2004)

    Article  Google Scholar 

  13. Ashburner, M., et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000)

    Article  Google Scholar 

  14. Ruepp, A., Brauner, B., Dunger-Kaltenbach, I., Frishman, G., Montrone, C., Stransky, M., Waegele, B., Schmidt, T., Doudieu, O.N., Stümpflen, V., Mewes, H.W.: CORUM: the comprehensive resource of mammalian protein complexes. Nucleic Acids Res. 36, 646–650 (2008)

    Article  Google Scholar 

  15. Efron, B.: Bootstrap methods: Another look at the jackknife. The Annals of Statistics 7, 1–26 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman & Hall, Boca Raton (1994)

    Google Scholar 

  17. van Dongen, S.: Graph Clustering by Flow Simulation. Ph.D. thesis, University of Utrecht (2000)

    Google Scholar 

  18. Felsenstein, J.: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985)

    Article  Google Scholar 

  19. Bader, G.D., Hogue, C.W.V.: Analyzing yeast protein-protein interaction data obtained from different sources. Nat. Biotechnol. 20, 991–997 (2002)

    Article  Google Scholar 

  20. Brohee, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7, 488 (2006)

    Article  Google Scholar 

  21. Resnik, P.: Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. Journal of Artificial Intelligence Research 11, 95–130 (1999)

    MATH  Google Scholar 

  22. Lin, D.: An information-theoretic definition of similarity. In: Proc. 15th International Conf. on Machine Learning, pp. 296–304. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  23. Lord, P.W., Stevens, R.D., Brass, A., Goble, C.A.: Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation. Bioinformatics 19, 1275–1283 (2003)

    Article  Google Scholar 

  24. Schlicker, A., Domingues, F.S., Rahnenführer, J., Lengauer, T.: A new measure for functional similarity of gene products based on Gene Ontology. BMC Bioinformatics 7, 302 (2006)

    Article  Google Scholar 

  25. Huh, W.-K., et al.: Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003)

    Article  Google Scholar 

  26. Dwight, S.S., et al.: Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO). Nucleic Acids Res. 30, 69–72 (2002)

    Article  Google Scholar 

  27. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition 27, 861–874 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Martin Vingron Limsoon Wong

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Friedel, C.C., Krumsiek, J., Zimmer, R. (2008). Bootstrapping the Interactome: Unsupervised Identification of Protein Complexes in Yeast. In: Vingron, M., Wong, L. (eds) Research in Computational Molecular Biology. RECOMB 2008. Lecture Notes in Computer Science(), vol 4955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78839-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78839-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78838-6

  • Online ISBN: 978-3-540-78839-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics