Skip to main content

Construction Automation

  • Chapter
Springer Handbook of Automation

Part of the book series: Springer Handbooks ((SHB))

Abstract

The construction industry is labor intensive, project based, and slow to adopt emerging technologies. Combined, these factors make the construction industry not only one of the most dangerous industries worldwide, but also prone to low productivity and cost overruns due to shortages of skilled labor, unexpected site conditions, design changes, communication problems, constructability challenges, and unsuitability of construction means and techniques. Construction automation emerged to overcome these issues, since it has the potential to capitalize on increasing quality expectations from customers, tighter safety regulations, greater attention to computerized project control, and technological breakthroughs led by equipment manufacturers. Today, many construction operations have incorporated automated equipment, means, and methods into their regular practices.

The Introduction to this chapter provides an overview of construction automation, highlighting the contribution from robotics. Several motivations for automating construction operations are discussed in Sect. 61.1, and a historical background is included in Sect. 61.2. A description of automation in horizontal construction is included in Sect. 61.3, followed by an overview of building construction automation in Sect. 61.4. Some techniques and guidelines for construction management automation are discussed in Sect. 61.5, which also presents several emerging trends. Section 61.6 shows some typical application examples in todayʼs construction environment. Finally, Sect. 61.7 briefly draws conclusions and points out challenges for the adoption of construction automation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

ABCS:

automated building construction system

BIM:

building information model

CIRPAV:

computer-integrated road paving

CPM:

critical path method

ERP:

enterprise resource planning

GPS:

global positioning system

IFC:

industry foundation class

RFID:

radiofrequency identification

SMART:

Shimizu manufacturing system by advanced robotics technology

UWB:

ultra wire band

WASCOR:

WASeda construction robot

WLAN:

wireless local area network

Wi-Fi:

wireless fidelity

aecXML:

architecture, engineering and construction extensive markup language

References

  1. R. Tucker: High payoff areas for automation applications, Proc. 5th Int. Symp. Robotics Constr., Tokyo 1988 (Japan Industrial Robot Association, Tokyo 1988)

    Google Scholar 

  2. B. Uwakweh: A framework for the management of construction robotics and automation, Proc. 7th Int. Symp. Robotics Constr., Bristol 1990 (Bristol Polytechnic, Bristol 1990)

    Google Scholar 

  3. J. Hsiao: A Comparison of Construction Automation in Major Constraints and Potential Techniques for Automation in the United States, Japan, and Taiwan. M.Sc. Thesis (MIT, Boston 1994)

    Google Scholar 

  4. M.J. Skibniewski: Robotics in Civil Engineering (Van Nostrand Reinhold, Southampton, Boston, New York 1988)

    Google Scholar 

  5. R. Kangari: Advanced robotics in civil engineering and construction, Proc. 5th Int. Conf. Adv. Robotics, Pisa 1991 (Institute of Electrical and Electronics Engineers, Los Alamitos 1991)

    Google Scholar 

  6. R. Best, G. de Valence (Eds.): Design and Construction: Building in Value (Butterworth Heinemann, London 2002)

    Google Scholar 

  7. L. Cousineau, N. Miura: Construction Robots: The Search for New Building Technology in Japan (ASCE, Reston 1998)

    Google Scholar 

  8. D. Cobb: Integrating automation into construction to achieve performance enhancements, Proc. CIB World Build. Congr., Wellington 2001 (International Council for Research and Innovation in Building and Construction, Rotterdam 2001)

    Google Scholar 

  9. M. Lehto, G. Salvendy: Models of accident causation and their application: review and reappraisal, J. Eng. Technol. Manag. 8, 173–205 (1991)

    Article  Google Scholar 

  10. D. Castro-Lacouture, J. Irizarry, C.A. Arboleda: Ultra wideband positioning system and method for safety improvement in building construction sites, Proc. ASCE/CIB Constr. Res. Congr., Grand Bahama Island 2007 (American Society of Civil Engineers, Reston 2007)

    Google Scholar 

  11. Bureau of Labor Statistics – BLS: Census of Fatal Occupational Injuries – 2006 (BLS, Washington DC 2007), http://www.bls.gov/iif/oshcfoi1.htm#2006 (last accessed Dec 7, 2007)

    Google Scholar 

  12. T.S. Abdelhamid, J.G. Everett: Identifying root causes of construction accidents, ASCE J. Constr. Eng. Manag. 126(1), 52–60 (2000)

    Article  Google Scholar 

  13. J.J. Adrian: Construction Productivity Improvement (Elsevier, Amsterdam 1987)

    Google Scholar 

  14. C.H. Oglesby, H.W. Parker, G.A. Howell: Productivity Improvement in Construction (McGraw Hill, New York 1989)

    Google Scholar 

  15. D. Crosthwaite: The global construction model: a cross-sectional analysis, Constr. Manag. Econ. 18, 619–627 (2000)

    Article  Google Scholar 

  16. J. Lopes, L. Ruddock, L. Ribeiro: Investment in construction and economic growth in developing countries, Build. Res. Inf. 30(3), 152–159 (2002)

    Article  Google Scholar 

  17. K.W. Chau: Estimating industry-level productivity trends in the building industry from building cost and price data, Constr. Manag. Econ. 11, 370–83 (1993)

    Article  Google Scholar 

  18. D.W. Halpin: Construction Management, 3rd edn. (Wiley, Hoboken 2006)

    Google Scholar 

  19. C. Peterson: A Methodology for Identifying Automation Opportunities in Industrial Construction. M.Sc. Thesis (University of Texas at Austin, Austin 1990)

    Google Scholar 

  20. R.W. Nielsen: Construction field operations and automated equipment, Autom. Constr. 1, 35–46 (1992)

    Article  Google Scholar 

  21. J.G. Everett, A.H. Slocum: CRANIUM: device for improving crane safety and productivity, ASCE J. Constr. Eng. Manag. 119(1), 1–17 (1994)

    Google Scholar 

  22. C. Balaguer: Open issues and future possibilities in the EU construction automation, Proc. 17th Int. Symp. Robotics Constr., Taipei 2000 (National Taiwan University, Taipei 2000)

    Google Scholar 

  23. C. Haas, K. Saidi: Construction automation in North America, Proc. 22nd Int. Symp. Robotics Constr., Ferrara 2005 (University of Ferrara, Ferrara 2005)

    Google Scholar 

  24. R.D. Schraft, G. Schmierer: Service Robots: Products, Scenarios, Visions (A.K. Peters, Natick 2000)

    Google Scholar 

  25. F. Peyret, J. Jurasz, A. Carrel, E. Zekri, B. Gorham: The computer integrated road construction project, Autom. Constr. 9, 447–461 (2000)

    Article  Google Scholar 

  26. Gomaco: Slipform Pavers (Gomaco Corporation, Ida Grove 2008), http://www.gomaco.com/Resources/pavers.htm(last accessed Feb 27, 2008)

    Google Scholar 

  27. Q. Ha, M. Santos, Q. Nguyen, D. Rye, H. Durrant-Whyte: Robotic excavation in construction automation, IEEE Robotics Autom. Mag. 9(1), 20–28 (2002)

    Article  Google Scholar 

  28. D.W. Seward: Control and Instrumentation Research Group (Lancaster University, Lancaster 2008), http://www.engineering.lancs.ac.uk/REGROUPS/ci/Files/projects/derek.html (last accessed Feb 27, 2008)

    Google Scholar 

  29. L.E. Bernold: Control schemes for tele-robotic pipe installation, Autom. Constr. 16, 518–524 (2007)

    Article  Google Scholar 

  30. C. Maynard, R.L. Williams, P. Bosscher, L.S. Bryson, D. Castro-Lacouture: Autonomous robot for pavement construction in challenging environments, Proc. 10th ASCE Int. Conf. Eng. Constr. Oper. Chall. Environ., League City/Houston 2006 (American Society of Civil Engineers, Reston 2006)

    Google Scholar 

  31. D. Castro-Lacouture, L.S. Bryson, C. Maynard, R.L. Williams, P. Bosscher: Concrete paving productivity improvement using a multi-task autonomous robot, Proc. 24th Int. Symp. Robotics Constr., Cochi 2007 (Indian Institute of Technology, Madras 2007)

    Google Scholar 

  32. L.E. Bernold: Motion and path control for robotic excavation, J. Aerosp. Eng. 6(1), 1–18 (1993)

    Article  Google Scholar 

  33. D.V. Bradley, D.W. Seward: The development, control and operation of an autonomous robotic excavator, J. Intell. Robotics Syst. 21, 73–97 (1998)

    Article  Google Scholar 

  34. Shimizu: SMART System (Shimizu Corporation, Tokyo 2008), http://www.shimz.com.sg/techserv/tech_con1.html (last accessed Feb 27, 2008)

    Google Scholar 

  35. Obayashi: Appearance of Big Canopy (Obayashi Corporation, Osaka 2005), http://www.thaiobayashi.co.th/images/obacorp/     technology_automate/1n.jpg (last accessed Feb 27, 2008)

    Google Scholar 

  36. Obayashi: ABCS Construction Scene (Obayashi Corporation, Osaka 2005), http://www.thaiobayashi.co.th/images/obacorp/technology_automate/5n.jpg(last accessed Feb 27, 2008)

    Google Scholar 

  37. M. Handa, Y. Hasegawa, H. Matsuda, K. Tamaki, S. Kojima, K. Matsueda, T. Takakuwa, T. Onoda: Development of interior finishing unit assembly system with robot: WASCOR IV research project report, Autom. Constr. 5(1), 31–38 (1996)

    Article  Google Scholar 

  38. C. Eastman, P. Teicholz, R. Sacks, K. Liston: BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors (Wiley, Hoboken 2008)

    Google Scholar 

  39. A. Kaklauskas, E.K. Zavadskas, S. Raslanas: Multivariant design and multiple criteria analysis of building refurbishments, Eng. Build. 37, 361–372 (2005)

    Article  Google Scholar 

  40. Y. Lee, J.D. Gilleard: Collaborative design: a process model for refurbishment, Autom. Constr. 11(5), 535–544 (2002)

    Article  Google Scholar 

  41. J. Tulke, J. Hanff: 4-D construction sequence planning – new process and data model, Proc. CIB-W78 24th Int. Conf. Inf. Technol. Constr., Maribor 2007 (Int. Council for Research and Innovation in Building and Construction, Rotterdam 2007)

    Google Scholar 

  42. R. Navon: Research in automated measurement of project performance indicators, Autom. Constr. 16(7), 176–188 (2006)

    MathSciNet  Google Scholar 

  43. E. Jaselskis, T. El-Misalami: Implementing radio frequency identification in the construction process, ASCE J. Constr. Eng. Manag. 129(6), 680–688 (2003)

    Article  Google Scholar 

  44. S. Kang, D. Tesar: Indoor GPS metrology system with 3-D probe for precision applications, Proc. ASME IMECE Int. Mech. Eng. Congr., Anaheim 2004 (American Society of Mechanical Engineers, New York 2004)

    Google Scholar 

  45. G. Cheok, W.C. Stone, R. Lipman, C. Witzgall: Ladars for construction assessment and update, Autom. Constr. 9, 463–477 (2000)

    Article  Google Scholar 

  46. C. Caldas, D. Grau, C. Haas: Using global positioning systems to improve materials locating processes on industrial projects, ASCE J. Constr. Eng. Manag. 132(7), 741–749 (2004)

    Article  Google Scholar 

  47. E. Jaselskis, Z. Gao, R.C. Walters: Improving transportation projects using laser scanning, ASCE J. Constr. Eng. Manag. 131(3), 377–384 (2005)

    Article  Google Scholar 

  48. H. Sternberg, T. Kersten, I. Jahn, R. Kinzel: Terrestrial 3-D laser scanning – data acquisition and object modelling for industrial as-built documentation and architectural applications, Proc. 20th ISPRS Congress, Istanbul 2004 (International Society for Photogrammetry and Remote Sensing, Istanbul 2004)

    Google Scholar 

  49. M. Böhms, C. Lima, G. Storer, J. Wix: Framework for future construction ICT, Int. J. Des. Sci. Technol. 11(2), 153–162 (2004)

    Google Scholar 

  50. R.J. Fontana, E. Richley, J. Barney: Commercialization of an ultra wideband precision asset location system, Proc. IEEE Conf. Ultra Wideband Syst. Technol., Reston 2003 (Institute of Electrical and Electronics Engineers, Los Alamitos 2003)

    Google Scholar 

  51. D. Castro-Lacouture, L.S. Bryson, J. Gonzalez-Joaqui: Real-time positioning network for intelligent construction, Proc. Int. Conf. Comput. Decis. Mak. Civ. Build. Eng., Montreal 2006 (International Society for Computing in Civil and Building Engineering, Montreal 2006)

    Google Scholar 

  52. Z. Zhu, I. Brilakis: Comparison of civil infrastructure optical-based spatial data acquisition techniques, Proc. ASCE Comput. Civ. Eng., Pittsburgh 2007 (American Society of Civil Engineers, 2007)

    Google Scholar 

  53. D. Castro-Lacouture, M. Skibniewski: Implementing a B2B e-Work system to the approval process of rebar design and estimation, ASCE J. Comput. Civ. Eng. 20(1), 28–37 (2006)

    Article  Google Scholar 

  54. D. Castro-Lacouture, M. Skibniewski: Implementation of e-Work models for the automation of construction materials management systems, Prod. Plan. Control 14(8), 789–797 (2003)

    Article  Google Scholar 

  55. S.Y. Nof: Models of e-Work, Proc. IFAC Symp. on Manufacturing, Modelling, Management and Control, Rio, Greece 2000 (Elsevier, Amsterdam 2000)

    Google Scholar 

  56. P. Anussornnitisarn, S.Y. Nof: e-Work: the challenge of the next generation ERP systems, Prod. Plan. Control 14(8), 753–765 (2003)

    Article  Google Scholar 

  57. B. Akinci, M. Fischer, R. Levitt, B. Carlson: Formalization and automation of time-space conflict analysis, ASCE J. Comput. Civ. Eng. 6(2), 124–135 (2002)

    Article  Google Scholar 

  58. Caterpillar: ACCUGRADE GPS Grade Control System (Caterpillar Inc, Peoria 2008), http://www.cat.com/cda/layout?m=62100&x=7 (last accessed Feb 27, 2008)

    Google Scholar 

  59. M. Golparvar-Fard, F. Peña-Mora, C. Arboleda, S.H. Lee: Visualization of construction progress monitoring with 4-D simulation model overlaid on time-lapsed photographs, ASCE J. Comput. Civil Eng. (2009), Forthcoming

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Castro-Lacouture PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Castro-Lacouture, D. (2009). Construction Automation. In: Nof, S. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78831-7_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78831-7_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78830-0

  • Online ISBN: 978-3-540-78831-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics