Skip to main content

Aircraft Manufacturing and Assembly

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

Increasingly the manufacturing of complex products and component parts involves significant automation functions. This chapter describes a cross section of automated manufacturing systems used to fabricate, inspect, and assemble aircraft. Aircraft manufacturing cost reductions were made possible by development of advanced technologies and applied automation to produce high-quality products, make air transportation affordable, and improve the standard of living for people around the globe. Fabrication and assembly of a commercial aircraft involve a variety of detail part fabrication and assembly operations. Fuselage assembly involves riveting/fastening operations at five major assembly levels. The wing has three major levels of assembly. The propulsion systems, landing gear, interiors, and several other electrical, hydraulic, and pneumatic systems are installed to complete the aircraft structurally and, after functional tests, it normally gets painted and goes to the flight ramp for final customer acceptance checks and delivery. Aircraft manufacturing techniques are well developed, fabrication and assembly processes follow a defined sequence, and process parameters for manual and mechanized/automated manufacturing are precisely controlled. Process steps are inspected and documented to meet the established Federal Aviation Administration quality requirements, ensuring reliable functions of components, structures, and systems, which result in dependable aircraft performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

AFP:

automated fiber placement

AQ:

as-quenched

ATL:

automated tape layup

CNC:

computer numerical control

DB:

database

DOF:

degrees of freedom

DR:

digital radiography

FSW:

friction stir welding

FW:

framework

HP:

horsepower

IML:

inside mold line

IV:

intravenous

MIT:

Massachusetts Institute of Technology

MIT:

miles in-trail

MRR:

material removal rate

NDI:

nondestructive inspection

OML:

outside mold line

PE:

pulse echo

RPM:

revolutions per minute

SPC:

statistical process control

SPF:

super plastic forming

TTU:

through transmission ultrasound

UT:

ultrasonic testing

References

  1. C. Wick, J.T. Benedict, R.F. Veilleux: Tool and Manufacturing Engineering Handbook – Vol. 2: Forming (SME, Dearborn 1984)

    Google Scholar 

  2. E.H. Zimmerman: Getting Factory Automation Right: The First Time (SME, Dearborn 2001)

    Google Scholar 

  3. J.A. Schey: Introduction to Manufacturing Processes (McGraw Hill, New York 1987)

    Google Scholar 

  4. M. Watts: High performance machining in aerospace, Proc. 4th Int. Conf. Metal Cutt. High Speed Mach. (Boeing, Seattle 2002)

    Google Scholar 

  5. M. Watts: Evolving aerospace machining processes, 4th Int. Conf. High Speed Mach. – Ind. Tool. Conf. (Southampton 2001)

    Google Scholar 

  6. L. Hefti: Innovations in fabricating superplastically formed components, First and Second Int. Symp. Superplast. Superplast. Form. Technol. (ASM, Materials Park 2003) pp. 124–130

    Google Scholar 

  7. D. Sanders: A production system using ceramic die technology for superplastic forming, Superplast. Adv. Mat. ICSAM 2003 (Trans Tech, 2004) pp. 177–182

    Google Scholar 

  8. GEMCOR: http://www.gemcor.com (2009)

  9. PASER: Abrasive waterjet helps make composites affordable for Boeing, http://www.flowcorp.com/waterjet-resources.cfm?id=251 (2008)

  10. Boeing completes first 787 composite fuselage section, http://www.boeing.com/companyoffices/gallery/images/commercial/787/k63211-1.html (2005)

  11. R.A. Kisch: Automated Fiber Placement Historical Perspective (Boeing, Seattle 2006), http://www.ingersoll.com/ind/tapelayer.htm

    Google Scholar 

  12. Boeing reduces 737 airplaneʼs final-assembly time by 50 percent, http://www.boeing.com/news/releases/2005/q1/nr_050127g.html (2005)

  13. T.G. Gutowski: Advanced Composites Manufacturing (Wiley, New York 1997)

    Google Scholar 

  14. S. Mazumdar: Composites Manufacturing: Materials, Product, and Process Engineering (CRC Press, Boca Raton 2002)

    Google Scholar 

  15. F. Campbell Jr.: Manufacturing Processes for Advanced Composites (Elsevier, Amsterdam 2004)

    Google Scholar 

  16. R. Bossi, F. Iddings, G. Wheeler (Eds.): Nondestructive Testing Handbook, Vol. 4 – Radiographic Testing, 3rd edn. (American Society for Nondestructive Testing, Columbus 2002)

    Google Scholar 

  17. R. Halsmshaw: Nondestructive Testing, 2nd edn. (Edward Arnold, London 1991)

    Google Scholar 

  18. G.L. Workman, D. Kishoni (Eds.): Nondestructive Testing Handbook, Vol. 7 – Ultrasonic Testing, 3rd edn. (American Society for Nondestructive Testing, Columbus 2007)

    Google Scholar 

  19. ASM: ASM Handbook, Vol. 21 – Composites, Quality Assurance (ASM, Metals Park 2001)

    Google Scholar 

  20. J. Summerscales (Ed.): Nondestructive Testing of Fibre-Reinforced Plastics Composites, Vol. 2 (Elsevier, New York 1990), pp. 107–111

    Google Scholar 

  21. G.L. Workman: Robotics and nondestructive testing – a primer, World Conf. Nondestruct. Test. (NDT) (1985) pp. 1822–1829

    Google Scholar 

  22. P. Walkden, P. Wright, S. Melton, G. Field: Automated ultrasonic systems, World Conf. NDT (1985) pp. 1822–1829

    Google Scholar 

  23. T.S. Jones: Inspection of composites using the automated ultrasonic scanning system (AUSS), Mater. Eval. 43(6), 746–753 (1985)

    Google Scholar 

  24. M.K. Reighard, T.W. Van Oordt, N.L. Wood: Rapid ultrasonic scanning of aircraft structures, Mater. Eval. 49(12), 1506–1514 (1991)

    Google Scholar 

  25. Y. Bar-Cohen, P.G. Backes: Scanning aircraft structures using open-architecture robotic crawlers as platforms with NDT boards and sensors, Mater. Eval. 57(3), 361–366 (1999)

    Google Scholar 

  26. J.J. Gallar: Modular robotic manipulation in radiographic inspection, Mater. Eval. 46(11), 1397–1399 (1988)

    Google Scholar 

  27. D. Mery: Automated radioscopic testing of aluminum die castings, Mater. Eval. 64(2), 135–143 (2006)

    Google Scholar 

  28. ASTM: ASTM E 1025-84, Standard Practice for Hole-Type Image Quality Indicators Used for Radiography

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Branko Sarh Dr , James Buttrick BSc , Clayton Munk or Richard Bossi PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sarh, B., Buttrick, J., Munk, C., Bossi, R. (2009). Aircraft Manufacturing and Assembly. In: Nof, S. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78831-7_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78831-7_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78830-0

  • Online ISBN: 978-3-540-78831-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics