Skip to main content

A History of Automatic Control

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

Automatic control , particularly the application of feedback, has been fundamental to the development of automation. Its origins lie in the level control, water clocks, and pneumatics/hydraulics of the ancient world. From the 17th century onwards, systems were designed for temperature control, the mechanical control of mills, and the regulation of steam engines. During the 19th century it became increasingly clear that feedback systems were prone to instability. A stability criterion was derived independently towards the end of the century by Routh in England and Hurwitz in Switzerland. The 19th century, too, saw the development of servomechanisms, first for ship steering and later for stabilization and autopilots. The invention of aircraft added (literally) a new dimension to the problem. Minorskyʼs theoretical analysis of ship control in the 1920s clarified the nature of three-term control, also being used for process applications by the 1930s. Based on servo and communications engineering developments of the 1930s, and driven by the need for high-performance gun control systems, the coherent body of theory known as classical control emerged during and just after WWII in the US, UK and elsewhere, as did cybernetics ideas. Meanwhile, an alternative approach to dynamic modeling had been developed in the USSR based on the approaches of Poincaré and Lyapunov. Information was gradually disseminated, and state-space or modern control techniques, fuelled by Cold War demands for missile control systems, rapidly developed in both East and West. The immediate post-war period was marked by great claims for automation, but also great fears, while the digital computer opened new possibilities for automatic control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AI:

artificial intelligence

ASME:

American Society of Mechanical Engineers

CNC:

computer numerical control

DDC:

direct digital control

IAT:

Institut Avtomatiki i Telemekhaniki

IAT:

interarrival time

ICT:

information and communication technology

KTA:

Kommissiya Telemekhaniki i Avtomatiki

LQG:

linear-quadratic-Gaussian

MIT:

Massachusetts Institute of Technology

MIT:

miles in-trail

NDRC:

National Defence Research Committee

O.R.:

operations research

PC:

personal computer

PID:

proportional, integral, and derivative

PLC:

programmable logic controller

WWII:

world war 2

References

  1. O. Mayr: The Origins of Feedback Control (MIT, Cambridge 1970)

    MATH  Google Scholar 

  2. F.W. Gibbs: The furnaces and thermometers of Cornelius Drebbel, Ann. Sci. 6, 32–43 (1948)

    Article  Google Scholar 

  3. T. Mead: Regulators for wind and other mills, British Patent (Old Series) 1628 (1787)

    Google Scholar 

  4. H.W. Dickinson, R. Jenkins: James Watt and the Steam Engine (Clarendon Press, Oxford 1927)

    Google Scholar 

  5. C.C. Bissell: Stodola, Hurwitz and the genesis of the stability criterion, Int. J. Control 50(6), 2313–2332 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Bennett: A History of Control Engineering 1800–1930 (Peregrinus, Stevenage 1979)

    Google Scholar 

  7. G.B. Airy: On the regulator of the clock-work for effecting uniform movement of equatorials, Mem. R. Astron. Soc. 11, 249–267 (1840)

    Google Scholar 

  8. J.C. Maxwell: On governors, Proc. R. Soc. 16, 270–283 (1867)

    Article  Google Scholar 

  9. E.J. Routh: A Treatise on the Stability of a Given State of Motion (Macmillan, London, 1877)

    Google Scholar 

  10. A. Hurwitz: Über die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Teilen besitzt, Math. Ann. 46, 273–280 (1895), in German

    Article  MathSciNet  Google Scholar 

  11. E. Bompiani: Sulle condizione sotto le quali un equazione a coefficienti reale ammette solo radici con parte reale negative, G. Mat. 49, 33–39 (1911), in Italian

    Google Scholar 

  12. C.C. Bissell: The classics revisited – Part I, Meas. Control 32, 139–144 (1999)

    Google Scholar 

  13. C.C. Bissell: The classics revisited – Part II, Meas. Control 32, 169–173 (1999)

    Google Scholar 

  14. M. Tolle: Die Regelung der Kraftmaschinen, 3rd edn. (Springer, Berlin 1922), in German

    Google Scholar 

  15. O. Mayr: Feedback Mechanisms (Smithsonian Institution Press, Washington 1971)

    Google Scholar 

  16. T.P. Hughes: Elmer Sperry: Inventor and Engineer (Johns Hopkins Univ. Press, Baltimore 1971)

    Google Scholar 

  17. S. Bennett: A History of Control Engineering 1800–1930 (Peregrinus, Stevenage 1979) p. 137

    Google Scholar 

  18. S. Bennett: A History of Control Engineering 1930–1955 (Peregrinus, Stevenage 1993)

    MATH  Google Scholar 

  19. N. Minorsky: Directional stability of automatically steered bodies, Trans. Inst. Nav. Archit. 87, 123–159 (1922)

    Google Scholar 

  20. O. Heaviside: Electrical Papers (Chelsea, New York 1970), reprint of the 2nd edn.

    Google Scholar 

  21. S. Bennett: A History of Control Engineering 1800–1930 (Peregrinus, Stevenage 1979), Chap. 6

    Google Scholar 

  22. C.C. Bissell: Karl Küpfmüller: a German contributor to the early development of linear systems theory, Int. J. Control 44, 977–89 (1986)

    Article  MATH  Google Scholar 

  23. H. Nyquist: Regeneration theory, Bell Syst. Tech. J. 11, 126–47 (1932)

    MATH  Google Scholar 

  24. H.S. Black: Stabilized feedback amplifiers, Bell Syst. Tech. J. 13, 1–18 (1934)

    Google Scholar 

  25. H.W. Bode: Relations between amplitude and phase in feedback amplifier design, Bell Syst. Tech. J. 19, 421–54 (1940)

    Google Scholar 

  26. H.W. Bode: Network Analysis and Feedback Amplifier Design (Van Nostrand, Princeton 1945)

    Google Scholar 

  27. H.L. Hazen: Theory of servomechanisms, J. Frankl. Inst. 218, 283–331 (1934)

    Google Scholar 

  28. A. Leonhard: Die Selbsttätige Regelung in der Elektrotechnik (Springer, Berlin 1940), in German

    Google Scholar 

  29. C.C. Bissell: The First All-Union Conference on Automatic Control, Moscow, 1940, IEEE Control Syst. Mag. 22, 15–21 (2002)

    Article  Google Scholar 

  30. C.C. Bissell: A.A. Andronov and the development of Soviet control engineering, IEEE Control Syst. Mag. 18, 56–62 (1998)

    Article  Google Scholar 

  31. D. Mindell: Between Human and Machine (Johns Hopkins Univ. Press, Baltimore 2002)

    Google Scholar 

  32. C.C. Bissell: Textbooks and subtexts, IEEE Control Syst. Mag. 16, 71–78 (1996)

    Article  Google Scholar 

  33. H. Schmidt: Regelungstechnik – die technische Aufgabe und ihre wissenschaftliche, sozialpolitische und kulturpolitische Auswirkung, Z. VDI 4, 81–88 (1941), in German

    Google Scholar 

  34. C.C. Bissell: Control Engineering in the former USSR: some ideological aspects of the early years, IEEE Control Syst. Mag. 19, 111–117 (1999)

    Article  Google Scholar 

  35. A.D. Dalmedico: Early developments of nonlinear science in Soviet Russia: the Andronov school at Gorky, Sci. Context 1/2, 235–265 (2004)

    Article  Google Scholar 

  36. A.C. Hall: Application of circuit theory to the design of servomechanisms, J. Frankl. Inst. 242, 279–307 (1946)

    Article  Google Scholar 

  37. A.C. Hall: The Analysis and Synthesis of Linear Servomechanisms (Restricted Circulation) (The Technology Press, Cambridge 1943)

    Google Scholar 

  38. S. Bennett: A History of Control Engineering 1930–1955 (Peregrinus, Stevenage 1993) p. 142

    MATH  Google Scholar 

  39. H.J. James, N.B. Nichols, R.S. Phillips: Theory of Servomechanisms, Radiation Laboratory, Vol. 25 (McGraw-Hill, New York 1947)

    Google Scholar 

  40. C.C. Bissell: Pioneers of control: an interview with Arnold Tustin, IEE Rev. 38, 223–226 (1992)

    Article  Google Scholar 

  41. A.L. Whiteley: Theory of servo systems with particular reference to stabilization, J. Inst. Electr. Eng. 93, 353–372 (1946)

    Google Scholar 

  42. C.C. Bissell: Six decades in control: an interview with Winfried Oppelt, IEE Rev. 38, 17–21 (1992)

    Article  Google Scholar 

  43. C.C. Bissell: An interview with Hans Sartorius, IEEE Control Syst. Mag. 27, 110–112 (2007)

    Article  Google Scholar 

  44. W.R. Evans: Control system synthesis by root locus method, Trans. AIEE 69, 1–4 (1950)

    Google Scholar 

  45. A.A. Andronov, S.E. Khaikin: Theory of Oscillators (Princeton Univ. Press, Princeton 1949), translated and adapted by S. Lefschetz from Russian 1937 publication

    Google Scholar 

  46. L.A. MacColl: Fundamental Theory of Servomechanisms (Van Nostrand, Princeton 1945)

    Google Scholar 

  47. S. Bennett: The emergence of a discipline: automatic control 1940–1960, Automatica 12, 113–121 (1976)

    Article  MATH  Google Scholar 

  48. E.A. Feigenbaum: Soviet cybernetics and computer sciences, 1960, Commun. ACM 4(12), 566–579 (1961)

    Article  Google Scholar 

  49. R. Bellman: Dynamic Programming (Princeton Univ. Press, Princeton 1957)

    MATH  Google Scholar 

  50. R.E. Kalman: Contributions to the theory of optimal control, Bol. Soc. Mat. Mex. 5, 102–119 (1960)

    MathSciNet  Google Scholar 

  51. R.E. Kalman: A new approach to linear filtering and prediction problems, Trans. ASME J. Basic Eng. 82, 34–45 (1960)

    Google Scholar 

  52. R.E. Kalman, R.S. Bucy: New results in linear filtering and prediction theory, Trans. ASME J. Basic Eng. 83, 95–108 (1961)

    MathSciNet  Google Scholar 

  53. L.S. Pontryagin, V.G. Boltyansky, R.V. Gamkrelidze, E.F. Mishchenko: The Mathematical Theory of Optimal Processes (Wiley, New York 1962)

    MATH  Google Scholar 

  54. T.J. Williams: Computer control technology – past, present, and probable future, Trans. Inst. Meas. Control 5, 7–19 (1983)

    Article  Google Scholar 

  55. C.A. Davis: Industrial Electronics: Design and Application (Merrill, Columbus 1973) p. 458

    Google Scholar 

  56. T. Williams, S.Y. Nof: Control models. In: Handbook of Industrial Engineering, 2nd edn., ed. by G. Salvendy (Wiley, New York 1992) pp. 211–238

    Google Scholar 

  57. J.C. Willems: In control, almost from the beginning until the day after tomorrow, Eur. J. Control 13, 71–81 (2007)

    Article  MathSciNet  Google Scholar 

  58. G.S. Brown, D.P. Campbell: Instrument engineering: its growth and promise in process-control problems, Mech. Eng. 72, 124–127 (1950)

    Google Scholar 

  59. G.S. Brown, D.P. Campbell: Instrument engineering: its growth and promise in process-control problems, Mech. Eng. 72, 136 (1950)

    Google Scholar 

  60. G.S. Brown, D.P. Campbell: Instrument engineering: its growth and promise in process-control problems, Mech. Eng. 72, 587–589 (1950), discussion

    Google Scholar 

  61. N. Wiener: Cybernetics: Or Control and Communication in the Animal and the Machine (Wiley, New York 1948)

    Google Scholar 

  62. D.F. Noble: Forces of Production. A Social History of Industrial Automation (Knopf, New York 1984)

    Google Scholar 

  63. S.Y. Nof: Collaborative control theory for e-Work, e-Production and e-Service, Annu. Rev. Control 31, 281–292 (2007)

    Article  Google Scholar 

  64. G. Johannesen: From control to cognition: historical views on human engineering, Stud. Inf. Control 16(4), 379–392 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Bissell PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bissell, C. (2009). A History of Automatic Control. In: Nof, S. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78831-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78831-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78830-0

  • Online ISBN: 978-3-540-78831-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics