Skip to main content

In vitro Cultures Open New Prospects for Basic Research in Arbuscular Mycorrhizas

  • Chapter
Mycorrhiza

It is now 20 years since the publication of Bécard and Fortin’s article (1988) in which the modern basis for arbuscular mycorrhizal (AM) monoxenic cultures was established. Since then, many research projects have been carried out using in vitro systems, and new prospects have been opened up by utilizing the amazing research material provided by monoxenic plates. More and more researchers now acknowledge that in vitro AM production is the sole way of getting large amounts of clean, clonal, contamination-free AM fungal material. This has opened the doors for molecular biology and biochemical techniques to be applied to mycorrhizal research, and the direct consequence of this is an exponential increase in our knowledge in the basic biology of this mutualistic symbiosis over the last 10 years. However, monoxenic cultures have far more to offer than just being AM tissue factories; fields of AM research as different (yet interlinked) as colony architecture and dynamics, intra- and extraradical fungal morphology, mycorrhizal physiology, biotic and abiotic stress responses, microbial interactions and even the production of ultrapure, mycorrhiza-based biofertilizers have benefited from this ‘in vitro revolution’.

This chapter aims to summarize the opportunities offered by using in vitro culture technology, and to encourage researchers to (1) utilize existing, yet little known monoxenic culture techniques, and (2) improve them and design new in vitro experimental systems. It should not be regarded as a compilation of methods, but rather as a brainstorming exercise designed to create new avenues of mycorrhizal research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bago B (1998) AM monoxenic cultures using tomato non-transformed roots. In: Kling M (ed) Development and function of the mycelium of arbuscular mycorrhizal fungi. Dept. Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden, pp 41-44

    Google Scholar 

  • Bago B, Bécard G (2002) Bases of the obligate biotrophy of arbuscular mycorrhizal fungi. In: Mycorrhiza technology: from genes to bioproducts -achievements and hurdles in arbuscular mycorrhizal research. Birkhäuser, Basel, pp 33-48

    Google Scholar 

  • Bago B, Cano C (2005) Breaking myths on arbuscular mycorrhizas in vitro biology. In: Declerck S, Strullu DG, Fortin A (eds) In vitro biology of mycorrhizal symbiosis. Soil Biology Series, vol 4. Springer, Heidelberg, pp 111-138

    Google Scholar 

  • Bago B, Vierheilig H, Piché Y, Azcón-Aguilar C (1996) Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular-mycorrhizal fungus Glomus intraradices grown in monoxenic culture. New Phytol 133:273-280

    Article  Google Scholar 

  • Bago B, Azcón-Aguilar C, Piché Y (1998a) Architecture and developmental dynamics of the external mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown under monoxenic conditions. Mycologia 90:52-62

    Article  Google Scholar 

  • Bago B, Zipfel W, Williams RC, Chamberland H, Lafontaine J-G, Webb WW, Piché Y (1998b) In vivo studies on the nuclear behavior of the arbuscular mycorrhizal fungus Gigaspora rosea grown under axenic conditions. Protoplasma 203:1-15

    Article  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Piche Y (1999a). Nuclei of symbiotic arbuscular mycorrhizal fungi as revealed by in vivo two-photon microscopy. Protoplasma 209:77-89

    Article  CAS  Google Scholar 

  • Bago B, Pfeffer PE, Douds DD Jr., Brouillette J, Bécard G, Shachar-Hill Y (1999b) Carbon metabolism in spores of the arbuscular mycorrhizal fungus Glomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiol 121:263-271

    Article  CAS  Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycor- rhizas. Plant Physiol 124:949-958

    Article  CAS  Google Scholar 

  • Bago B, Pfeffer P, Shachar-Hill Y (2001) Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis? New Phytol 149:4-8

    Article  CAS  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2002) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal sym- biosis. Plant Physiol 128:108-124

    Article  CAS  Google Scholar 

  • Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar- Hill Y (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131:1496-507

    Article  CAS  Google Scholar 

  • Bago B, Cano C, Azcón-Aguilar C, Samson J, Coughlan AP, Piché Y (2004) Differential morpho- genesis of the extraradical mycelium of an arbuscular mycorrhizal fungus grown monoxeni- cally on spatially heterogeneous culture media. Mycologia 96:452-462

    Article  Google Scholar 

  • Bago B, Cano C, Toussaint J-P, Smith S, Dickson S (2006) Interactions between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and non-transformed tomato roots of either wild-type or AM-defective phenotypes in monoxenic cultures. Mycorrhiza 16:429-436

    Article  Google Scholar 

  • Balaji B, Ba AM, LaRue TA, Tepfer D, Piché Y (1994) Pisum sativum mutants insensitive to nodulation are also insensitive to invasion in vitro by the mycorrhizal fungus Gigaspora mar- garita Plant Sci 102:195-203

    Article  Google Scholar 

  • Barker SJ, Tagu D (2000) The roles of auxins and cytokinins in mycorrhizal symbioses. J Plant Growth Regul 19:144-154

    CAS  Google Scholar 

  • Bécard G, Fortin A (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T- DNA transformed roots. New Phytol 108:211-218

    Article  Google Scholar 

  • Bécard G, Piché Y (1989a) Fungal growth stimulation by CO2 and root exudates in vesicular- arbuscular mycorrhizal symbiosis Appl Environ Microbiol 55:2320-2325

    Google Scholar 

  • Bécard G, Piché Y (1989b) New aspects on the acquisition of biotrophic status by a vesicular- arbuscular mycorrhizal fungus, Gigaspora margarita New Phytol 112:77-83

    Article  Google Scholar 

  • Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 14:695-700

    Article  CAS  Google Scholar 

  • Brundrett MC, Piché Y, Peterson RL (1984) A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Can J Bot 62:2128-2134

    Article  Google Scholar 

  • Cano C, Bago A (2005) Competition and substrate colonization strategies of three polyxenically- grown arbuscular mycorrhizal fungi. Mycologia 97:1201-1214

    Article  Google Scholar 

  • Cappellazzo G, Lanfranco L, Bonfante PA (2007). Limiting source of organic nitrogen induces specific transcriptional responses in the extraradical structures of the endomycorrhizal fungus Glomus intraradices. Curr Genet 51:59-70

    Article  CAS  Google Scholar 

  • Cavagnaro TR, Gao L-L, Smith FA, Smith SE (2001) Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytol 151:469-475

    Article  Google Scholar 

  • Chabot S, Bel-Rhlid R, Chênevert R, Piché Y (1992a) Hyphal growth promotion in vitro of the VA mycorrhizal fungus, Gigaspora margarita Becker & Hall, by the activity of structurally specific flavonoid compounds under CO2-enriched conditions. New Phytol 122:461-467

    Article  CAS  Google Scholar 

  • Chabot S, Bécard G, Piché Y (1992b) Life cycle of Glomus intraradix in root organ culture. Mycologia 84:315-321

    Article  Google Scholar 

  • Cranenbrouck S, Voets L, Bivort C, Renard L, Strullu DG, Declerck, S (2005) Methodologies for in vitro cultivation of arbuscular mycorrhizal fungi with root organs. In: Declerck S, Strullu DG, Fortin A (eds) In vitro biology of mycorrhizal symbiosis. Soil biology series, vol 4. Springer, Heidelberg, pp 341-375

    Google Scholar 

  • Declerck S, Strullu DG, Fortin A (eds) (2005) In vitro culture of mycorrhizas. Soil biology series, vol 4. Springer, Heidelberg

    Google Scholar 

  • Dickson S (2004) The Arum-Paris continuum of mycorrhizal symbioses. New Phytol 163:187-200

    Article  Google Scholar 

  • Dickson S, Kolesik P (1999) Visualisation of mycorrhizal fungal structures and quantification of their surface area and volume using laser scanning confocal microscopy. Mycorrhiza 9:205-213.

    Article  Google Scholar 

  • Dickson S, Schweiger PF, Smith FA, Söderström B, Smith S (2003) Paired arbuscules in the Arum-type arbuscular mycorrhizal symbiosis with Linum usitatissimum L. Can J Bot 81:457-463

    Article  Google Scholar 

  • Dickson S, Smith FA, Smith SE (2007) Structural differences in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud, where next? Mycorrhiza, online DOI 10.1007/s00572-007-0130-9

    Google Scholar 

  • Doner LW, Bécard G (1991) Solubilization of gellan gels by chelation of cations. Biotechnol Technol 5:25-28

    Article  CAS  Google Scholar 

  • Douds DD (1997) A procedure for the establishment of Glomus mosseae in dual culture with Ri T-DNA-transformed carrot roots. Mycorrhiza 7:57-61

    Article  CAS  Google Scholar 

  • Dupré de Boulois H, Voets L, Delvaux B, Jakobsen I, Declerck S (2006) Transport of radiocae- sium by arbuscular mycorrhizal fungi to Medicago truncatula under in vitro conditions. Environ Microbiol 8:1926-1934

    Article  Google Scholar 

  • Fortin JA, Bécard G, Declerck S, Dalpe Y, St-Arnaud M, Coughlan AP, Piche Y (2002) Arbuscular mycorrhiza on root-organ cultures. Can J Bot 80:1-20

    Article  CAS  Google Scholar 

  • Gallaud I (1904) Études sur les mycorrhizes endotrophes. Rev Génet Bot, Bigot Frerès, Lille

    Google Scholar 

  • Gallaud I (1905) Études sur les mycorrhizes endotrophes. Rev Gén Bot 17:5-48, 66-83, 123-135, 223-239, 313-325, 425-433, 479-500

    Google Scholar 

  • Gao, L-L (2002) Control of arbuscular mycorrhizal colonisation: studies of a mycorrhiza- defective tomato mutant. PhD thesis, The University of Adelaide, Australia

    Google Scholar 

  • Gao L-L, Knogge W, Delp G, Smith FA, Smith SE (2004) Expression patterns of defense-related genes in different types of arbuscular mycorrhizal development in wild-type and mycorrhiza- defective mutant tomato. Mol Plant Microbe Interact 17:1103-1113

    Article  CAS  Google Scholar 

  • Gavito ME, Olsson PA, Rouhier H, Medina-Penafiel A, Jakobsen I, Bago A, Azcón-Aguilar C (2005) Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. New Phytol 168:179-188

    Article  CAS  Google Scholar 

  • Giovannetti M, Fortuna, P, Citernesi, AS, Morini, S, Nuti, MP (2001) The occurrence of anastomosis for- mation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytol 151:717-724

    Article  Google Scholar 

  • Glassop D, Smith SE, Smith FW (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222:688-698

    Article  CAS  Google Scholar 

  • González-Guerrero M, Azcón-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn trans- porter of the cation diffusion facilitator family. Fungal Genet Biol 42:130-40

    Article  Google Scholar 

  • González-Guerrero M, Cano C, Azcón-Aguilar C, Ferrol N (2007).GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza 17:327-335

    Article  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819-23

    Article  CAS  Google Scholar 

  • Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular-arbuscular mycor- rhizal fungi. Mycol Res 95:1160-1162

    Article  Google Scholar 

  • Hepper CM (1984) Isolation and culture of VA mycorrhizal (VAM) fungi. In: Powell CL, Bagjaraj DJ (eds) VA mycorrhizae, CRC Press, pp 95-112

    Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2006) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139-146

    Article  Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2007) Influence of salinity on the in vitro devel- opment of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol (in press)

    Google Scholar 

  • Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687-696

    Article  CAS  Google Scholar 

  • Joner EJ, Ravnskov S, Jakobsen I (2000) Arbuscular mycorrhizal phosphate transport under monoxenic conditions using radio-labelled inorganic and organic phosphate. Biotechnol Lett 22:1705-1708

    Article  CAS  Google Scholar 

  • Juge C, Samson J, Bastien C, Vierheilig H, Coughlan A, Piché Y (2002) Breaking dormancy in spores of the arbuscular mycorrhizal fungus Glomus intraradices: a critical cold-storage period. Mycorrhiza 12:37-42

    Article  Google Scholar 

  • Karandashov V, Kuzovkina I, Hawkins HJ, George E (2000) Growth and sporulation of the arbus- cular mycorrhizal fungus Glomus caledonium in dual culture with transformed carrot roots. Mycorrhiza 10:23-28

    Article  CAS  Google Scholar 

  • Karandashov V, Nagy R, Wegmüller S, Amrhein N, Bucher M (2004) Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 101:6285-6290

    Article  CAS  Google Scholar 

  • Koide RT, Kabir Z (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol 148:511-517

    Article  CAS  Google Scholar 

  • Kormanik PP, McGraw AC (1982) Quantification of vesicular-arbuscular mycorrhizae in plant roots. In: Schenck NC (ed) Methods and principles of mycorrhizal research. The American Phytopathological Society, St Paul, Minn., pp 37-45

    Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486-505

    Article  Google Scholar 

  • Lammers PJ, Jun J, Abubaker J, Arreola R, Gopalan A, Bago B, Hernandez-Sebastia C, Allen JW, Douds DD, Pfeffer PE, Shachar-Hill Y (2001) The glyoxylate cycle in an arbuscular mycor- rhizal fungus. Carbon flux and gene expression. Plant Physiol 127:1287-1298

    Article  CAS  Google Scholar 

  • Lopez-Pedrosa A, González-Guerrero M, Valderas A, Azcón-Aguilar C, Ferrol N (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol 43:102-110

    Article  CAS  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extraradical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant Microbe Interact 14:1140-1148

    Article  CAS  Google Scholar 

  • Mosse B (1962) The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. J Gen Microbiol 27:509-520

    CAS  Google Scholar 

  • Mosse B, Hepper C (1975) Vesicular-arbuscular mycorrhizal infections in root organ cultures. Physiol Plant Pathol 5:215-223

    Article  Google Scholar 

  • Mugnier J, Mosse B (1987) Vesicular-arbuscular mycorrhizal infections in transformed root- inducing T-DNA roots grown axenically. Phytopathology 77:1045-1050

    Article  Google Scholar 

  • Müller J, Mohr U, Sprenger N, Bortlik K, Boller T, Wiemken A (1999) Pool sizes of fructans in roots and leaves of mycorrhizal and non-mycorrhizal barley. New Phytol 142:551-559

    Article  Google Scholar 

  • Ouziad F, Hildebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscu- lar mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634-649

    Article  CAS  Google Scholar 

  • Pawlowska TE, Charvat I (2004) Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl Environ Microbiol 70:6643-6649

    Article  CAS  Google Scholar 

  • Pawlowska TE, Douds DD, Charvat I (1999) In vitro propagation and life cycle of the arbuscular mycorrhizal fungus Glomus etunicatum. Mycol Res 103:1549-1556

    Article  Google Scholar 

  • Pfeffer PE, Douds DD, Bécard G, Shachar-Hill Y (1999) Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol 120:587-598

    Article  CAS  Google Scholar 

  • Pfeffer PE, Bago B, Shachar-Hill Y (2001) Exploring mycorrhizal function with NMR spectros- copy. New Phytol 150:543-553

    Article  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158-161

    Article  Google Scholar 

  • Plenchette C, Declerck S., Diop TA, Strullu GD (1996) Infectivity of monoaxenic subcultures of the arbuscular mycorrhizal fungus Glomus versiforme associated with Ri-T-DNA-transformed carrot root. Appl Microbiol Biotechnol 46:545-548

    Article  CAS  Google Scholar 

  • Porcel R, Aroca R, Cano C, Bago A, Ruíz-Lozano JM (2006) Identification of a gene from the arbuscular mycorrhizal fungus Glomus intraradices encoding for a 14-3-3 protein that is up- regulated by drought stress during the AM symbiosis. Microbiol Ecol 52:575-582

    Article  Google Scholar 

  • Sanders, IR (2004) Intraspecific genetic variation in arbuscular mycorrhizal fungi and its consequences for molecular biology, ecology, and development of inoculum. Can J Bot 82:1057-1062

    Article  CAS  Google Scholar 

  • Smith FA, Smith SE (1997) Structural diversity in (vesicular)-arbuscular mycorrhizal symbiosis. New Phytol 137:373-388

    Article  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycor- rhizal responses in growth or total P uptake. New Phytol 162:511-524

    Article  Google Scholar 

  • St-Arnaud M, Elsen A (2005) Interaction of arbuscular mycorrhizal fungi with soil-borne patho- gens and non-pathogenic rhizosphere micro-organisms. In: Declerck S, Strullu DG, Fortin A (eds) In vitro biology of mycorrhizal symbiosis. Soil biology series, vol 4. Springer, Heidelberg, pp 216-231

    Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus G. intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328-332

    Article  Google Scholar 

  • Strullu DG, Romand C (1986) Méthode d’obtention d’endomycorhizes á vésicules et arbuscules en conditions axéniques. Physiol Végét 303:245-250

    Google Scholar 

  • Tennant D (1975) A test of a modified line intersect method of estimating root length. J Ecol 63:995-1001.

    Article  Google Scholar 

  • Toussaint JP, St-Arnaud M, Charest C. 2004. Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Can J Microbiol 50:251-260

    Article  CAS  Google Scholar 

  • Vierheilig H, Bago A (2005) In: Declerck S, Strullu DG, Fortin A (eds) In vitro biology of mycor- rhizal symbiosis. Soil biology series, vol 4. Springer, Heidelberg, pp 139-158

    Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piche Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004-5007

    CAS  Google Scholar 

  • Villegas JR, William RD, Nantais L, Archambault J, Fortin JA (1996) Effect of N source on pH and nutrient exchange of extrametrical mycelium in a Ri T-DNA transformed root system. Mycorrhiza 6:247-251

    Article  CAS  Google Scholar 

  • Voets L, Dupré de Boulois H., Renard L, Strullu DG, Declerck S (2005) Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiol Lett 248:111-118

    Article  CAS  Google Scholar 

  • Waschke A, Sieh D, Tamasloukht M, Fischer K, Mann P, Franken P (2006) Identification of heavy metal-induced genes encoding glutathione S-transferases in the arbuscular mycorrhizal fungus Glomus intraradices. Mycorrhiza 17:1-10

    Article  CAS  Google Scholar 

  • White NS, Errington RJ, Fricker MD, Wood JL (1996) Aberration control in quantitative imaging of botanical specimens by multidimensional fluorescence microscopy. J Microsc 181:99-116

    Article  Google Scholar 

  • White PR (1934) Tomato root organ culture. Plant Physiol 9:585-600

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Bago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cano, C., Dickson, S., González-Guerrero, M., Bago, A. (2008). In vitro Cultures Open New Prospects for Basic Research in Arbuscular Mycorrhizas. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_30

Download citation

Publish with us

Policies and ethics