Skip to main content
Book cover

Mycorrhiza pp 485–503Cite as

The Fungal Transmitted Viruses

  • Chapter

Most plant viruses are absolutely dependent on a vector for plant-to-plant spread. A number of different types of organisms work as vectors for different plant viruses. Plants, as sessile organisms, cannot transmit viruses except for some instances of seed or pollen transmission and the movement of plants resulting from human intervention. Thus, the great majority of plant viruses are dependent for their spread upon efficient transmission from plant to plant by specific vectors.

Vector transmission is a specific event in the virus life cycle. Virus-encoded determinants specifically interact with the vector, thereby facilitating virus transmission, and various plant viruses utilize different, but specific, vectors to facilitate their spread. Different organisms such as insects, fungi, nematodes, animals and arthropods are recognized as vectors for various plant viruses, but in most cases, viruses of a given taxon have a specific type of vector (e.g., potyviruses are aphidtransmitted). These observations suggest that virus particles as well as vectors have specific sites that mediate their recognition. The coat protein (CP) of a plant virus has been shown to play an important role in transmission, and particular amino acids within the CP have been shown to be essential for this process (Brown et al. 1995; Campbell 1996; Gray 1996; Gray et al. 1999; Pirone and Blanc 1996). Recent work with Cucumber necrosis virus (CNV) has suggested that attachment of virions to vector zoospore is an important aspect of the transmission process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams MJ, Swaby AG, Jones P (1988) Confirmation of the transmission of Barley yellow mosaic virus. Ann Appl Virol 112:1331-41

    Google Scholar 

  • Adams MJ, Antoniw JF, Mullins JGL (2001) Plant virus transmission by plasmodiophorid fungi is associated with distinctive transmembrane regions of virus encoded proteins. Arch Virol 146:1139-1153

    Article  CAS  PubMed  Google Scholar 

  • An H, Melcher U, Doss P, Payton M, Guenzi AC, Verchot-Lubicz J (2003) Evidence that the 37 kDa protein of soil-borne wheat mosaic virus is a virus movement protein. J Gen Virol 84:3153-3163

    Article  CAS  PubMed  Google Scholar 

  • Arora KD, Ajello L, Rai B, Elmer HM, Mukerji KG, Richard PE, Eivind BL, Bhatnagar D (1991) Handbook of Applied Mycology. Volume 1, 131-154

    Google Scholar 

  • Barr DJS (1979) Morphology and host range of Polymyxa graminis, Polymyxabetae, and Ligniera pilorum from Ontario and some other areas. Can J Plant Pathol 1:85-94

    Google Scholar 

  • Brown DJF, Robertson WM and. Trudgill D (1995) Transmission of viruses by plant nematodes. Annu Rev Phytopathol 33:223-249

    Article  CAS  PubMed  Google Scholar 

  • Campbell RN (1962) Relationship between the lettuce big-vein virus and its vector, Olpidium brassicae. Nature 195:675-677

    Article  CAS  PubMed  Google Scholar 

  • Campbell RN (1996) Fungal transmission of plant viruses. Annu Rev Phytopathol 34:87-108

    Article  CAS  PubMed  Google Scholar 

  • Campbell RN Sim ST (1994) Host specificity and nomenclature of Olpidium bornovanus (= ¬Olpidium radicale) and comparisons to Olpidium brassicae. Can J Bot 72:1136-1143

    Article  Google Scholar 

  • Campbell RN, Fry PR (1966) The nature of the associations between Olpidium brassicae and let-tuce big vein and tobacco necrosis viruses. Virology 29:222-233

    Article  CAS  PubMed  Google Scholar 

  • Campbell RN, Grogan RG (1963) Bigvein virus of lettuce and its transmission by Olpidium brassicae. Phytopathology 53:252-259

    Google Scholar 

  • Campbell RN, Grogan RG (1964) Acquisition and transmission of lettuce bigvein virus by Olpidium brassicae. Phytopathology 54:681-690

    Google Scholar 

  • Campbell RN, Sim ST, Lecoq H (1995) Virus transmission by host-specific strains of Olpidium bornovanus and Olpidium brassicae. Eur J Plant Pathol 101:273-282

    Article  Google Scholar 

  • Carrrington JC and Morris TJ (1984) Complementary DNA cloning and analysis of carnation mottle virus RNA. Virology 139:22-31

    Article  Google Scholar 

  • Chen JP, Swaby AG, Adams MJ, Yili R (1991) Barley mild mosaic virus inside its fungal vector, Polymyxa graminis. Ann Appl Biol 118:615-621

    Article  Google Scholar 

  • Clay CM, Walsh JA (1996) Watercress yellowspot virus (WYSV): cytopathic alterations suggest it is a member of the Tombusviridae. Proc 3rd Symp Int Work Group Plant Viruses Fungal Vectors, Dundee, Scotland

    Google Scholar 

  • Coutts RHA, Rigden JE, Slabas AR, Lomonossoff GP, Wise PJ (1991) The complete nucleotide sequence of tobacco necrosis virus strain D. J. Gen Virol 72:1521-1529

    Article  CAS  PubMed  Google Scholar 

  • Daft MJ, Okusanya BO (1973) Effect of endogone mycorrhiza on plant growth. V. Influence of infection on the multiplication of viruses in Tomato, Petunia and Strawberry. New Phytologist 72(5):975-983

    Article  Google Scholar 

  • Diao A, Chen J, Gitton F, Antoniw JF, Mullins J (1999) Sequences of European wheat mosaic 970. The relationship between Cucumber necrosis virus and its vector, Olpidium cucurbitacearum. Virology 42:204-211

    Google Scholar 

  • Dick MW (2001) Straminopilous fungi: systematics of the peronsoporomycetes including accounts of the marine of novel filamentous morphology. J Gen Virol 75:3585-3590

    Google Scholar 

  • Driskel B, Verchot-Lubicz J (2003) Interactions between Soil-borne wheat mosaic virus and its vector Polymyxa graminis may involve the viral movement protein. Am Soc Virol 22nd Annu Meet, University of California, Davis (Abstract)

    Google Scholar 

  • Dubois F, Sangwan RS, Sangwan Norreel BS (1994) Immunogold labelling and electron microsopic screening of Beet necrotic yellow vein virus in the fungus Polymyxa betae infecting Beta vulgaris root cortical parenchyma cell. Int J Plant Sci 155:545-552

    Article  Google Scholar 

  • Fakhro A, Schwarz D, Franken P, Bargen SV, Bandte M, Büttner C (2007) Application of the endophyte Piriformospora indica in hydroponic cultures. Tropentag 2007 International Research on Food Security, Natural Resource Management and Rural Development Cuvillier Verlag Göttingen

    Google Scholar 

  • Fry PR (1958) The relationship of Olpidiumbrassicae (Wor.) Dang. to the bigveindisease of lettuce. NZ J Agric Res 1:301-440

    Google Scholar 

  • Gerhardson B, Insunza V (1979) Soil transmission of red clover necrotic mosaic virus. Phytopathol Z 94:67-71

    Article  Google Scholar 

  • Gray SM (1996) Plant virus protein involved in natural vector transmission Trends Microbiol 4:259-264.

    CAS  Google Scholar 

  • Gray SM, Rochon DM (1999) Vectors of plant viruses. In: Granoff A, Webster R (eds) Encyclopedia of virology, vol 1. Academic, London, pp 1899-1910

    Google Scholar 

  • Grogan RG, Zink FW, Hewitt WB, Kimble KA (1958). The association of Olpidium with the bigvein disease of lettuce. Phytopathology 48:292-296

    Google Scholar 

  • Guilley H, Carrington, JC, Balazas E, Jonard G, Richards K and Morris TJ (1985) Nucleotide sequence and genome organization of carnation mottle virus RNA. Nucl Acids Res 13:6663-6677

    Article  CAS  PubMed  Google Scholar 

  • Harrison SC, Olson AJ, Schutt CE, Winkler FK, Brigogne G (1978) Tomato bushy stunt virus at 2.9 °A resolution. Nature 276:368-373

    Article  CAS  PubMed  Google Scholar 

  • Hewitt WB, Raski DJ, Goheen AC (1958) Nematode vector of soil-borne fan leaf virus of grapevines. Phytopathology 48:586-595

    Google Scholar 

  • Hogle JM, Maeda A, Harrison SC (1986) Structure and assembly of Turnip crinkle virus. I. X-ray crystallographic structure analysis at 3.2 °A resolution. J Mol Biol 191:625-638

    CAS  Google Scholar 

  • Iwaki M, Hanada K, Ramirez A. Maria E, Onogi S (1987) Lisianthus necrosis virus, a new necrovirus from Eustoma russellianum. Phytopathology 77:867-870

    Article  Google Scholar 

  • Kakkani K, Sgro JY, Rochon D (2001). Identification of specific Cucumber necrosis Virus coat protein amino acids affecting fungus transmission and zoospore attachment. Virology 75:5576-5583

    Article  Google Scholar 

  • Kanyuka K, Ward E, Adams MJ (2003) Polymyxa graminis and the cereal viruses it transmits: a research challenge. Mol Plant Pathol 4:393-406

    Article  CAS  PubMed  Google Scholar 

  • Karen P. Scott Satoshi K, Brian R and Bryan D. Harrison (1994) The nucleotide sequence of potato mop-top virus RNA 2: a novel type of genome organization for a furovirus. J Gen Virol 75:3561-3568

    Article  Google Scholar 

  • Kashiwazaki S, Minobe Y, Omura T and Hibino H (1990) Nucleotide sequence of barley yellow mosaic virus RNA1: a close evolutionary relationship with potyvirus. J Gen Virol 71:2781-2790

    Article  CAS  PubMed  Google Scholar 

  • Kashiwazaki S, Scott KP, Reavy B, Harrison BD (1995) Sequence analysis and gene content of potato mop-top virus RNA-3: further evidence of heterogeneity in the genome organization of furoviruses. Virology 206:701-706

    Article  CAS  PubMed  Google Scholar 

  • Keskin B (1964) Polymyxa betae n. sp., ein Parasit in den Wurzeln von Beta vulgaris Tournefort, besonders während der Jugendentwicklung der Zuckerrube. Arch Microbiol 49:348-374

    CAS  Google Scholar 

  • Kruse M, Koenig R, Hoffmann A, Kaufmann A, Commandeur U (1994) Restriction fragment length polymorphism analysis of reverse transcription-PCR products reveals the existence of two major strain groups of beet necrotic yellow vein virus. J Gen Virol 75:1835-1842

    Article  CAS  PubMed  Google Scholar 

  • Kuwata S, Kubo S, Yamashita S, Doi Y (1983) Rod-shaped particles, a probable entity of Lettuce big vein virus. Ann. Phytopathol. Soc. Jpn. 49:246-251

    Google Scholar 

  • Lange L, Insunza V (1977) Root inhabiting Olpidium species: the O. Radicale complex. Trans Br Mycol Soc 69:377-384

    Article  Google Scholar 

  • Lommel SA, Martelli GP, Russo M (2000) Family Tombusviridae. In: Van Regenmortel MHV, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch. DJ, Pringle CR, Wickner RB (eds) Virus taxonomy. Academic, San Diego, pp 791-825

    Google Scholar 

  • Lot H, Campbell RN, Souche S, Milne RG, Roggero P (2002) Transmission by Olpidium brassicae of Mirafiori lettuce virus and Lettuce big-vein virus, and their roles in Lettuce Big-Vein etiology. Phytopathology 92:288-293

    Article  PubMed  Google Scholar 

  • Macfarlane I (1982) Red clover necrotic mosaic virus (RCNMV). Rothamsted Exp Stn Rep 1981, p 190

    Google Scholar 

  • Mayo MA (1999) Developments in plant virus taxonomy since the publication of the 6th ICTV report. Arch Virol 144:1659-1666

    Article  CAS  PubMed  Google Scholar 

  • Mayo MA (2000) Genus Varicosavirus. In: Van Regenmortel MHV, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch. DJ, Pringle CR, Wickner RB (eds) Virus taxonomy. Academic, San Diego, pp 521-523

    Google Scholar 

  • McLean MA, Campbell RN, Hamilton R I. and Rochon DM (1994) Involvement of the cucumber necrosis virus coat protein in the specificity of fungus transmission by Olpidium bornovanus. Virology 204:840-842

    Article  CAS  PubMed  Google Scholar 

  • Melcher U (2000) The ‘30K’ superfamily of viral movement proteins. J Gen Virol. 81(Pt 1):257-266.

    CAS  PubMed  Google Scholar 

  • Meulewaeter F, Seurinck J, van Emmelo J (1990) Genome structure of tobacco necrosis virus strain A. Virology 177:699-709

    Article  CAS  PubMed  Google Scholar 

  • Miller JS, Damude H, Robbins MA, Reade RD, Rochon DM (1997) Genome structure of Cucumber leaf spot virus, sequence analysis suggests it belongs to a distinct species within the Tombusviridae. Virus Res 52:51-60

    Article  CAS  PubMed  Google Scholar 

  • Milne RG. (2002) Ophioviruses: hiding in the background, emerging from the underground. In: CM Rush, U Merz (eds) Proc 5th Symp Int Work Group Plant Viruses Fungal Vectors. Inst Plant Sci, Swiss Fed Inst Technol, Zurich, pp 68-71

    Google Scholar 

  • Morikawa T, Nomura Y, Yamamato T, Natsuaki T (1995) Partial characterization of virus-like particles associated with Tulip mild mottle mosaic. Ann Phytopathol Soc Jpn. 61:578-581

    Google Scholar 

  • Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, et al. (1995) Virus taxonomy classification and nomenclature of viruses. Arch Virol Suppl 10

    Google Scholar 

  • Mutasa ES,Ward E, Adams MJ, Collier CR, Chwarszczynska DM, Asher MJC (1993) A sensitive DNA probe for the detection of Polymyxa betae in sugar beet roots. Phys Mol Plant Pathol 43:379-390

    Article  CAS  Google Scholar 

  • Naum-Ongania G, Gago-Zachert S, Pena E, Grau O, Garcia ML (2003) Citrus psorosis virus RNA 1 is of negative polarity and potentially encodes in its complementary strand a 24K protein of unknown function and 280K putative RNA dependent RNA polymerase. Virus Res 96:49-61

    Article  CAS  PubMed  Google Scholar 

  • Oda Y, Saeki K, Takahashi Y, Maeda T, Naitow H (2000) Crystal structure of Tobacco necrosis virus at 2.25 resolution. J Mol Biol 300:153-169

    Article  CAS  PubMed  Google Scholar 

  • Pirone TP, Blanc S (1996) Helper dependent vector transmission of plant viruses. Annu Rev Phytopathology 34:227-247

    Article  CAS  Google Scholar 

  • Rao AS, Brakke MK (1969) Relation of soil-borne wheat mosaic virus and its fungal vector, Polymyxa graminis. Phytopathology 59:581-587

    Google Scholar 

  • Reade R, Delroux K, Macdonald K, Sit TL, Lommel SA, Rochon D (2001) Spontaneous deletion enhances movement of a Cucumber necrosis virus based chimera expressing the red clover necrotic mosaic virus movement protein gene. Mol Plant Pathol 2:13-21

    Article  CAS  PubMed  Google Scholar 

  • Reade R, Miller J, Robbins M, Xiang Y, Rochon D (2003) Molecular analysis of the Cucumber leaf spot virus genome. Virus Res 91:171-179

    Article  CAS  PubMed  Google Scholar 

  • Reade R, Wu Z, Rochon D (1999) Both RNA rearrangement and point mutation contribute to repair of defective chimeric viral genomes to form functional hybrid viruses in plants. Virology 258:217-231

    Article  CAS  PubMed  Google Scholar 

  • Rochon DM, Tremaine JH (1989) complete nucleotide sequence of the cucumber necrosis virus genome. Virology 71:251-259

    Article  Google Scholar 

  • Rochon D, Kakani K, Robbins M, Reader R (2004) Molecular aspects of plant virus transmission by olpidium and plasmodiophoroid vectors. Annu Rev Phytopathol 42:211-241

    Article  CAS  PubMed  Google Scholar 

  • Roggero P, Ciuffo M, Vaira AM, Accotto GP, Masenga V, Milne RG (2000) An Ophiovirus isolated from lettuce with bigvein symptoms. Arch Virol 145:2629-2642

    Article  CAS  PubMed  Google Scholar 

  • Rysanek P, Stocky G, Haeberle AM, Putz C (1992) Immunogold labelling of Beetnecrotic yellow vein virus particles inside its fungal vector, Polymyxa betae. Agronomy 12:651-659

    Article  Google Scholar 

  • Sasaya T, Kishikawa K, Koganezawa H (2001) Nucleotide sequence of the coat protein gene of Lettuce big-vein virus. J Gen Virol. 82:1509-1515

    CAS  PubMed  Google Scholar 

  • Shirako Y (1998) Non-AUG translation initiation in a plant RNA virus: a forty-amino-acid extension is added to the N terminus of the soil-borne wheat mosaic virus capsid protein. J Virol 72:1677-1682

    CAS  PubMed  Google Scholar 

  • Shirako Y, Wilson TM (1993) Complete nucleotide sequence and organization of the bipartite RNA genome of soil-borne wheat mosaic virus. Virology 195:16-32

    Article  CAS  PubMed  Google Scholar 

  • Stobbs LW, Cross GW, Manocha MS (1982) Specificity and methods of transmission of cucumber necrosis virus by Olpidium radicale zoospores. Can J Plant Pathol 4:134-142

    Google Scholar 

  • Tamada T, Schmitt C, Saito M, Guilley H, Richards K, Jonard G (1996) High resolution analysis of the readthrough domain of beet necrotic yellow vein virus readthrough protein: a KTER motif is important for efficient transmission of the virus by Polymyxa betae. J Gen Virol 77:1359-1367

    Article  CAS  PubMed  Google Scholar 

  • Temmink JHM, Campbell RN, Smith PR. (1970) Specificity and site of in vitro acquisition of tobacco necrosis virus by zoospores of Olpidium brassicae. J Gen Virol 9:201-213

    Article  Google Scholar 

  • Thouvenel JC, Fauquet C (1981) Further properties of peanut clump virus and studies on its natural transmission. Ann Appl Biol 97:99-107

    Article  Google Scholar 

  • Tomlinson JA (1958) Crook root of watercressIII. The causal organism Spongospora subterranea (Wallr.) Lagerh. f.sp. nasturtii f. sp. nov. Trans Br Mycol Soc 41:491-498

    Article  Google Scholar 

  • Tomlinson JA, Garrett RG (1964) Studies on the lettuce big-vein virus and its vector Olpidium brassicae (Wor.) Dang. Ann Appl Biol 54:45-61

    Article  Google Scholar 

  • Tomlinson JA, Faithful EM, Webb MJW, Fraser RSS, Seeley ND (1983) Chenopodium necrosis: a distinctive strain of tobacco necrosis virus isolated from river water. Ann Appl Biol 102:135-147

    Article  Google Scholar 

  • Torok VA, Vetten HJ (2002) Characterization of an ophiovirus associated with Lettuce ring necrosis. In: Lesemann DE, Vetten HJ (eds) Joint Conf Int Working Groups on Legume and Vegetable Viruses, Bonn 4-9 August 2002, Abstract p 4

    Google Scholar 

  • Vaira AM, Accotto GP, Constantini A, Milne RG (2003) The partial sequence of RNA1 of the ophiovirus Ranunculus white mottle virus indicates its relationship to rhaboviruses and provides candidate primers for an ophiovirus-specific RT-PCR test. Arch Virol 148:1037-1050

    Article  CAS  PubMed  Google Scholar 

  • Van der Wilk F, Dullemans AM, Verbeek M, van den Heuvel JFJM (2002) Nucleotide Sequence and genomic organization of an ophiovirus associated with lettuce big-vein disease. J Gen Virol 83:2869-2877

    CAS  PubMed  Google Scholar 

  • Verchot-Lubicz JV, Rush CM, Payton M, Colberg T (2000) Beet necrotic yellow vein virus accumulates inside resting spores and zoosporangia of its vector Polymyxa betae BNYVV infects P. betae. J Virol 4:37

    Google Scholar 

  • Vetten HJ, Lesemann DE, Dalchow J (1987) Electron microscopical and serological detection of virus-like particles associated with Lettuce big-vein disease. J Phytopathol 120:53-59

    Article  Google Scholar 

  • Walsh JA, Clay CM, Miller A (1989) A new virus disease of watercress in England. EPPO Bull. 19:463-70

    Article  Google Scholar 

  • Ward E, Adams MJ, Mutasa ES, Collier CR, Asher MJC (1994) Characterization of Polymyxa species by restriction analysis of PCR-amplified ribosomal DNA. Plant Pathol 43:872-877

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singh, D., Verma, N., Varma, A. (2008). The Fungal Transmitted Viruses. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_24

Download citation

Publish with us

Policies and ethics