Skip to main content
Book cover

Mycorrhiza pp 321–336Cite as

Resource Partitioning Between Extraradical and Intraradical AM Fungal Mycelium

  • Chapter

In nature the mycelia of arbuscular mycorrhizal (AM) fungi usually consist of one extraradical mycelium connecting several intraradical mycelia, which can be distributed between several plant species. The extraradical and intraradical mycelia differ clearly from each other in morphology and physiology, and they are characterised by specific gene expression profiles. In this chapter the interplay between AM fungal extraradical and intraradical mycelium will be discussed by addressing the physiological aspects of nutrient partitioning. The focus will be on the transport of carbon and phosphate, and the enzymatic activity related to the fungal metabolism. It will be shown that AM fungi distribute their resources between the extraradical and intraradical mycelium. The estimate of AM fungal biomass in roots and in soil can be obtained with AM fungal fatty acids. Combining this technique to stable isotope labeling enables to estimate flow rates and retention of fungal carbon in the intraradical and extraradical mycelium. The most important mechanisms for bidirectional transport in the symbiosis seem to be the translocation of triacylglycerols in lipid bodies and the translocation of phosphate in tubular vacuoles. The fungal phosphatase activity is regulated in the fungal mycelium and this activity probably mainly reflects the internal phosphate transitions in the mycelium, which are related to the overall phosphate translocation and metabolism. It is suggested to compare fungi from different taxonomical groups and to investigate the partitioning in fungal mycelium that connects multiple host plants at the same time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allaway WG, Ashford AE (2001) Motile tubular vacuoles in extramatrical mycelium and sheath hyphae of ectomycorrhizal systems. Protoplasma 215:218-225

    Article  CAS  PubMed  Google Scholar 

  • Aono T, Maldonado-Mendoza IE, Dewbre GR, Harrison MJ, Saito M (2004) Expression of alkaline phosphatase genes in arbuscular mycorrhizal mycorrhizas. New Phytol 162:525-534

    Article  CAS  Google Scholar 

  • Ashford AE, Allaway WG (2002) The role of the motile tubular vacuole system in mycorrhizal fungi. Plant Soil 244:177-187

    Article  CAS  Google Scholar 

  • Ashford AE, Ryde S, Barrow KD (1994) Demonstration of short chain polyphosphate in Pisolithus tinctorius and the implication for phosphorus transport. New Phytol 126:239-247

    Article  CAS  Google Scholar 

  • Ashford AE, Vesk PA, Orlovich DA, Markovina A-L, Allaway WG (1999) Dispersed polyphosphate in fungal vacuoles in Eucalyptus pilularis/Pisolithus tinctorius ectomycorrhizas. Fungal Genet Biol 28:21-33

    Article  CAS  PubMed  Google Scholar 

  • Bae KS, Barton LL (1989) Alkaline phosphatase and other hydrolyases produced by Cenococcum graniforme, an ectomycorrhizal fungus. Appl Environ Microbiol 55:2511-2516

    CAS  PubMed  Google Scholar 

  • Bago B, Pfeffer PE, Zipfel W, Lammers P, Shachar-Hill Y (2002a) Tracking metabolism and imaging transport in arbuscular mycorrhizal fungi. Plant Soil 244:189-197

    Article  CAS  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2002b) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108-124

    Article  CAS  PubMed  Google Scholar 

  • Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar-Hill Y (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131:1496-1507

    Article  CAS  PubMed  Google Scholar 

  • Balestrini R, Lanfranco L (2006) Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. Mycorrhiza 16:509-524

    Article  CAS  PubMed  Google Scholar 

  • Barrett-Lennard EG, Dracup M, Greenway H (1993) Role of extracellular phosphatases in the phosphorus-nutrition of clover. J Exp Bot 44:1595-1600

    Article  CAS  Google Scholar 

  • Bethlenfalvay GJ, Ames RN (1987) Comparison of two methods for quantifying extraradical mycelium of vesicular-arbuscular mycorrhizal fungi. Soil Sci Soc Am J 51:834-837

    Article  Google Scholar 

  • Boddington CL, Dodd JC (1999) Evidence that differences in phosphate metabolism in mycorrhizas formed by species of Glomus and Gigaspora might be related to their life-cycle strategies. New Phytol 142:531-538

    Article  Google Scholar 

  • Callow JA, Capaccio LCM, Parish G, Tinker PA (1978) Detection and estimation of polyphosphate in vesicular-arbuscular mycorrhizas. New Phytol 80:125-134

    Article  CAS  Google Scholar 

  • Cole L, Orlovich DA, Ashford AE (1998) Structure, function and mobility of vacuoles in filamentous fungi. Fungal Genet Biol 24:86-100

    Article  PubMed  Google Scholar 

  • Cooper KM, Tinker PB (1978) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas II. Uptake and translocation of phosphorus, zinc and sulphur. New Phytol 81:43-52

    Article  CAS  Google Scholar 

  • Cooper KM, Tinker PB (1981) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas IV. Effect of environmental variables on movement of phosphorus. New Phytol 88:327-339

    Article  CAS  Google Scholar 

  • Ezawa T, Saito M, Yoshida T (1995) Comparison of phosphatase localization in the intraradical hyphae of arbuscular mycorrhizal fungi, Glomus spp. and Gigaspora spp. Plant Soil 176:57-63

    Article  CAS  Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2001) Enzyme activity involved in glucose phosphorylation in two arbuscular mycorrhizal fungi: indication that polyP is not the main phosphagen. Soil Biol Biochem 33:1279-1281

    Article  CAS  Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244:221-230

    Article  CAS  Google Scholar 

  • Finlay RD, Read DJ (1986) The structure and function of the vegetative mycelium of ectomycorrhizal plants II. The uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytol 103:157-166

    Article  Google Scholar 

  • Gavito ME, Olsson PA, Rouhier H, Medina-Penafiel A, Jakobsen I, Bago A, Azcon-Aguilar C (2005) Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. New Phytol 168:179-188

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi S, Gianinazzi-Pearson V, Dexheimer J (1979) Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. III. Ultrastructural localization of acid and alkaline phosphatase in onion roots infected by Glomus mosseae (Nicol. & Gerd.). New Phytol 82:127-132

    Article  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1995) Proteins and protein activities in endomycorrhizal symbioses. In: Varma A, Hock B (eds) Mycorrhiza, structure, function, molecular biology and biotechnology. Springer, Heidelberg, pp 251-266

    Google Scholar 

  • Graham JH, Hodge NC, Morton JB (1995) Fatty acid methyl ester profiles for characterization of Glomalean fungi and their endomycorrhizae. Appl Environ Microbiol 61:58-64

    CAS  PubMed  Google Scholar 

  • Haas H, Redl B, Friedlin E, Stöffler G (1992) Isolation and analysis of the Penicillium chrysogenum phoA gene encoding a secreted phosphate-repressible acid phosphatase. Gene 113:129-133

    Article  CAS  PubMed  Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335-344

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992a) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. I. Spread of hyphae. New Phytol 120:371-380

    Article  CAS  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992b) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 2. Hyphal transport of 32P over defined distances. New Phytol 120:509-516

    Article  CAS  Google Scholar 

  • Joner EJ, Johansen A (2000) Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycol Res 104:81-86

    Article  CAS  Google Scholar 

  • Joner EJ, Van Aarle IM, Vosatka M (2000) Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. Plant Soil 226:199-210

    Article  CAS  Google Scholar 

  • Kjøller R, Rosendahl S (2000) Effects of fungicides on arbuscular mycorrhizal fungi: differential responses in alkaline phosphatase activity of external and internal hyphae. Biol Fertil Soil 31:361-365

    Article  Google Scholar 

  • Kojima T, Saito M (2004) Possible involvement of hyphal phosphatase in phosphate efflux from intraradical hyphae isolated from mycorrhizal roots colonized by Gigaspora margarita. Mycol Res 108:610-615

    Article  CAS  PubMed  Google Scholar 

  • Malcová R, Vosatka M, Albrechtová J (1999) Influence of arbuscular mycorrhizal fungi and simulated acid rain on the growth and coexistence of the grasses Calamagrostis villosa and Deschampsia flexuosa. Plant Soil 207:45-57

    Article  Google Scholar 

  • Nahas E, Terenzi HF, Rossi A (1982) Effects of carbon source and pH on the production and secretion of acid phosphatase (EC 3.1.3.2) and alkaline phosphatase (EC 3.1.3.1) in Neurospora crassa. J Gen Microbiol 128:2017-2021

    CAS  Google Scholar 

  • Nakano A, Takahashi K, Kimura M (1999) The carbon origin of arbuscular mycorrhizal fungi estimated from Δ13C values of individual spores. Mycorrhiza 9:41-47

    Article  CAS  Google Scholar 

  • Ogawa N, DeRisi J, Brown PO (2000) New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol Biol Cell 11:4309-4321

    CAS  PubMed  Google Scholar 

  • Olsson PA (1999) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303-310 Olsson PA, Johnson NC (2005) Tracking carbon from the atmosphere to the rhizosphere. Ecol Lett 8:1264-1270

    Article  Google Scholar 

  • Olsson PA, Bååth E, Jakobsen I (1997) Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures. Appl Environ Microbiol 63:3531-3538

    CAS  PubMed  Google Scholar 

  • Olsson PA, Van Aarle IM, Allaway WG, Ashford AE, Rouhier H (2002) Phosphorus effects on met-abolic processes in monoxenic arbuscular mycorrhiza cultures. Plant Physiol 130:1162-1171

    Article  CAS  PubMed  Google Scholar 

  • Olsson PA, Larsson L, Bago B, Wallander H, Van Aarle IM (2003) Ergosterol and fatty acids for biomass estimation of mycorrhizal fungi. New Phytol 159:7-10

    Article  CAS  Google Scholar 

  • Pearson JN, Jakobsen I (1993) Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi. New Phytol 124:481-488

    Article  CAS  Google Scholar 

  • Pfeffer PE, Douds DDJr., Bécard G, Shachar-Hill Y (1999) Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol 120:587-598

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen N, Lloyd DC, Ratcliffe RG, Hansen PE, Jakobsen I (2000) 31P NMR for the study of P metabolism and translocation in arbuscular mycorrhizal fungi. Plant Soil 226:245-253

    Article  CAS  Google Scholar 

  • Rees B, Shepherd VA, Ashford AE (1994) Presence of a motile tubular vacuole system in different phyla of fungi. Mycol Res 98:985-992

    Article  Google Scholar 

  • Saito M (1995) Enzyme activities of the internal hyphae and germinated spores of an arbuscular mycorrhizal fungus, Gigaspora margarita Becker & Hall. New Phytol 129:425-431

    Article  CAS  Google Scholar 

  • Saito K, Kuga-Uetake Y, Saito M (2004) Acidic vesicles in living hyphae of an arbuscular mycorrhizal fungus, Gigaspora margarita. Plant Soil 261:231-237

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Smith SE, Dickson S, Smith FA (2001) Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? Aust J Plant Physiol 28:683-694

    CAS  Google Scholar 

  • Solaiman MZ, Saito M (2001) Phosphate efflux from intraradical hyphae of Gigaspora margarita in vitro and its implication for phosphorus translocation. New Phytol 151:525-533

    Article  CAS  Google Scholar 

  • Solaiman MZ, Ezawa T, Kojima T, Saito M (1999) Polyphosphates in intraradical and extraradical hyphae of an arbuscular mycorrhizal fungus, Gigaspora margarita. Appl Environ Microbiol 65:5604-5606

    CAS  PubMed  Google Scholar 

  • Tisserant B, Gianinazzi S, Gianinazzi-Pearson, Gollotte A (1993) In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol Res 97:245-250

    Article  CAS  Google Scholar 

  • Toth R, Toth D (1982) Quantifying vesicular-arbuscular mycorrhizae using a morphometric tech-nique. Mycologia 74:182-187

    Article  Google Scholar 

  • Toth R, Miller RM, Jarstfer AG, Alexander T, Bennet EL (1991) The calculation of intraradical fungal biomass from percent colonization of vesicular-arbuscular mycorrhizae. Mycologia 83:553-558

    Article  Google Scholar 

  • Trépanier M, Bécard G, Moutoglis P, Willemot C, Gagné S, Avis TJ, Rioux J-A (2005) Dependence of arbuscular-mycorrhizal fungi on their plant host for palmitic acid synthesis. Appl Environ Microbiol 71:5341-5347

    Article  PubMed  CAS  Google Scholar 

  • Uetake Y, Kojima T, Ezawa T, Saito M (2002) Extensive tubular vacuole system in an arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 154:761-768

    Article  Google Scholar 

  • Van Aarle IM (2002) The ecophysiology of arbuscular mycorrhizal fungi: Phosphatase activity associated with extraradical and intraradical mycelium. PhD Thesis, Lund University, Lund

    Google Scholar 

  • Van Aarle IM, Olsson PA (2003) Fungal lipid accumulation and development of mycelial struc-tures in two arbuscular mycorrhizal fungi. Appl Environ Microbiol 69:6762-6767

    Article  PubMed  CAS  Google Scholar 

  • Van Aarle IM, Olsson PA, Söderström B (2001) Microscopic detection of phosphatase activity of saprophytic and arbuscular mycorrhizal fungi using a fluoregenic substrate. Mycologia 93:17-24

    Article  Google Scholar 

  • Van Aarle IM, Olsson PA, Söderström B (2002a) Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization. New Phytol 155:173-182

    Article  Google Scholar 

  • Van Aarle IM, Rouhier H, Saito M (2002b) Phosphatase activities of arbuscular mycorrhizal intraradical and extraradical mycelium, and their relation to phosphorus availability. Mycol Res 106:1224-1229

    Article  CAS  Google Scholar 

  • Van Aarle IM, Cavagnaro TR, Smith SE, Smith FA, Dickson S (2005) Metabolic activity of Glomus intraradices in Arum-and Paris-type arbuscular mycorrhizal colonization. New Phytol 166:611-618

    Article  PubMed  Google Scholar 

  • Viereck N, Hansen PE, Jakobsen I (2004) Phosphate pool dynamics in the arbuscular mycorrhizal fungus Glomus intraradices studied by in vivo 31P NMR spectroscopy. New Phytol 162:783-794

    Article  CAS  Google Scholar 

  • Vierheilig H, Schweiger P, Brundrett M (2005) An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol Plant 125:393-404

    CAS  Google Scholar 

  • Vosatka M, Dodd JC (1998) The role of different arbuscular mycorrhizal fungi in the growth of Calamagrostis villosa and Deschampsia flexuosa, in experiments with similated acid rain. Plant Soil 200:251-263

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid M. van Aarle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Aarle, I.M., Olsson, P.A. (2008). Resource Partitioning Between Extraradical and Intraradical AM Fungal Mycelium. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_16

Download citation

Publish with us

Policies and ethics