Skip to main content
Book cover

Mycorrhiza pp 307–320Cite as

The Biocontrol Effect of Mycorrhization on Soilborne Fungal Pathogens and the Autoregulation of the AM Symbiosis: One Mechanism, Two Effects?

  • Chapter

The establishment of the AM in the roots of more than 80% of all land plants is the result of a complex exchange of signals between the host plant and AMF. Many reports are available that once the AMF has penetrated the host root and established its interradical organs of nutrient exchange between the AMF and the plant, a number of physiological and morphological changes occur in the host plant.

In recent years, it has been reported that once plants are colonized by AMF, further root colonization by AMF is regulated (reviewed by Vierheilig 2004a,b). In analogy to the rhizobial autoregulatory mechanism in legume plants, this phenomenon with AMF has been named “autoregulation of mycorrhization”. Recently, it has been suggested that the bioprotective effect of mycorrhization and the autoregulation of mycorrhization are possibly two sides of the same coin. It seems plausible that an already mycorrhizal plant develops just one mechanism to repulse further colonization by fungi, not discriminating between AMF and soilborne pathogenic fungi (Vierheilig and Piché 2002; Vierheilig 2004a,b).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azcón-Aguilar C, Jaizme-Vega MC, Calvet C (2002) The contribution of arbuscular mycorrhizal fungi to the control of soil-borne plant pathogens. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Switzerland, pp 187-197

    Google Scholar 

  • Bago B, Vierheilig H, Piché Y, Azcon C (1996) Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture. New Phytol 133:273-280

    Article  Google Scholar 

  • Berta G, Trotta A, Fusconi A, Hooker JE, Munro M, Atkinson D, Giovannetti M, Morini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol 15:281-293

    PubMed  Google Scholar 

  • Blilou I, Bueno P, Ocampo JA, García-Garrido JM (2000a) Induction of catalase and ascorbate peroxidase activities in tobaccco roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae. Mycol Res 104:722-725.

    Article  CAS  Google Scholar 

  • Blilou I, Ocampo JA, García-Garrido JM. 2000b. Induction of Ltp (Lipid transfer protein) and Pal (Phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. J Exp Bot 51:1969-1977

    Article  CAS  PubMed  Google Scholar 

  • Caron M, Fortin JA, Richard C (1986a) Effect of inoculation sequence on the interaction between Glomus intraradices and Fusarium oxysporum f. sp. radicis-lycopersici in tomatoes. Can J Plant Pathol 8:12-16

    Google Scholar 

  • Caron M, Fortin JA, Richard C (1986b) Effect of phosphorus concentration and Glomus intraradices on Fusarium crown and root rot of tomatoes. Phytopathology 76:942-946

    Article  CAS  Google Scholar 

  • Catford JG, Staehelin C, Lerat S, Piché Y, Vierheilig H (2003) Suppression of arbuscular mycorrhizal colonization and nodulation in split-root systems of alfalfa after pre-inoculation and treatment with Nod factors. J Exp Bot 54:1481-1487

    Article  CAS  PubMed  Google Scholar 

  • Catford JG, Staehelin C, Larose G, Piché Y, Vierheilig H (2006) Systemically suppressed isofla-vonoids and their stimulating effects on nodulation and mycorrhization in alfalfa split-root systems. Plant Soil 285:257-266

    Article  CAS  Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hair, and of essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485-494

    Article  CAS  PubMed  Google Scholar 

  • Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1998a) Colonization pattern of root tissue by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato Plant Soil 185:223-232

    Article  Google Scholar 

  • Cordier C, Pozo M J, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998b) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus Mol Plant Microb Interact 11:1017-1028

    Article  CAS  Google Scholar 

  • Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525-533

    Article  Google Scholar 

  • García-Garrido JM, Ocampo JA (1989) Effect of VA mycorrhizal infection of tomato on damage caused by Pseudomonas syringae. Soil Biol Biochem 21:65-167

    Article  Google Scholar 

  • García-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377-1386

    Article  PubMed  Google Scholar 

  • Garcia Garrido JM, Vierheilig H (2007) From a germinating spore to an established arbuscular mycorrhiza: signalling and regulation. In: Khasa D, Piché Y, Coughlan A (eds) Advances in mycorrhizal biotechnology: a Canadian perspective. NRC Research Press, Ottawa (in press)

    Google Scholar 

  • Graham JH, Menge JA (1982) Influence of vesicular-arbuscular mycorrhizae and soil phosphorous on take-all disease of wheat. Phytopathology 72:95-98

    Article  Google Scholar 

  • Habte M, Zhang YC, Schmitt DP (1999) Effectiveness of Glomus species in protecting white clover against nematode damage. Can J Bot 77:135-139

    Article  Google Scholar 

  • Harrison M, Dixon R (1993) Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant-Microbe Interact 6:643-659

    CAS  Google Scholar 

  • Hause B, Cornelia M, Stanislav I, Strack D (2007) Jasmonate in arbuscular mycorrhizal interactions. Phytochemistry 68:101-110.

    Article  CAS  PubMed  Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis. Can J Bot 71:512-518

    Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459-480

    Article  CAS  Google Scholar 

  • Khaosaad T, Garcia-Garrido JM, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39:727-734

    Article  CAS  Google Scholar 

  • Kinkema M, Scott PT, Gresshoff PM (2006) Legume nodulation: successful symbiosis through short-and long-distance signalling. Funct Plant Biol 33:707-721

    Article  CAS  Google Scholar 

  • Lackie SM, Garriock ML, Peterson RL, Bowley SR (1987) Influence of host plant on the morphology of the vesicular-arbuscular mycorrhizal fungus Glomus versiforme (Daniels and Trappe) Berch. Symbiosis 3:147-158

    Google Scholar 

  • Larose G, Chenevert, Moutoglis P, Gagne S, Piché, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329-1339

    Article  CAS  Google Scholar 

  • Lerat S, Lapointe L, Gutjahr S, Piché Y, Vierheilig H (2003a) Carbon partitioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent. New Phytol 157:589-595

    Article  Google Scholar 

  • Lerat S, Lapointe L, Piché Y,Vierheilig H (2003b) Variable carbon sink strength of different Glomus mosseae strains colonizing barley roots. Can J Bot 81:886-889

    Article  Google Scholar 

  • Lioussanne L, Jolicoeur M, St. Arnaud M (2003) Effects of the alteration of tomato root exudation by Glomus intraradices colonization on Phytophthora parasitica var. Nicotianae zoospores. Abstract No. 253, Abstract Book ICOM 4; Montreal/ Canada

    Google Scholar 

  • Mark GL, Cassells AC (1996) Genotype-dependence in the interaction between Glomus fistulosum, Phytophthora fragariae and the wild strawberry (Fragaria vesca). Plant Soil 185:233-239

    Article  CAS  Google Scholar 

  • Medina HMJ, Gagnon H, Piché Y, Ocampo JA, García Garrido JM, Vierheilig H (2003) Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci 164:993-998

    Article  Google Scholar 

  • Meixner C, Ludwig-Müller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H (2005) Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta 222:709-715

    Article  CAS  PubMed  Google Scholar 

  • Meixner C, Vegvari G, Ludwig-Müller J, Gagnon H, Steinkellner S, Staehelin C, Gresshoff P, Vierheilig H (2007) Two defined alleles of the lrr receptor kinase GmNARK in supernodulating soybean govern differing autoregulation of mycorrhization. Physiol Plant 130:261-270

    Article  CAS  Google Scholar 

  • Morandi D (1996) Occurence of phytoalexins and phenolic compounds on endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241-251

    Article  CAS  Google Scholar 

  • Nagahashi G, Douds DD (2005) Environmental factors that affect presymbiotic hyphal growth and branching of arbuscular mycorrhizal fungi. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Heidelberg, pp 95-110

    Chapter  Google Scholar 

  • Norman J R, Hooker J E (2000) Sporulation of Phytophthora fragariae shows greater stimulation by exudates of non-mycorrhizal than by mycorrhizal strawberry roots. Mycol Res 104:1069-1073

    Article  Google Scholar 

  • Oka-Kira E, Kawaguchi M (2006) Long-distance signaling to control root nodule number. Curr Opin Plant Biol 9:496-502

    Article  CAS  PubMed  Google Scholar 

  • Pearson JN, Abbott LK, Jasper DA (1993) Mediation of competition between two colonizing VA mycorrhizal fungi by the host plant. New Phytol 123:93-98

    Article  Google Scholar 

  • Pinior A, Wyss U, Piché Y, Vierheilig H (1999) Plants colonized by AM fungi regulate further root colonization by AM fungi through altered root exudation. Can J Bot 77:891-897

    Article  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resitance. Curr Opinion Plant Biol 4:393-398

    Article  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C, Dumas-Gaudot E, Barea JM (1999) ß-1,3-glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Sci 141:149-157

    Article  CAS  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525-534

    Article  CAS  PubMed  Google Scholar 

  • Ryan A, Jones P (2004) The effect of mycorrhization of potato roots on the hatching chemicals active towards the potato cyst nematodes, Globodera pallida and G. rostochiensis. Nematol 6:335-342

    Article  Google Scholar 

  • Salzer P, Corbière H, Boller T (1999) Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus mosseae. Planta 208:319-325

    Article  CAS  Google Scholar 

  • Scheffknecht S, Mammerler R, Steinkellner S, Vierheilig H (2006) Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f. sp. lycopersici than root exudates from non-mycorrhizal tomato plants. Mycorrhiza 16:365-370

    Article  CAS  PubMed  Google Scholar 

  • Scheffknecht S, St-Arnaud M, Khaosaad T, Steinkellner S, Vierheilig H (2007) An altered root exudation pattern through mycorrhization affecting microconidia germination of the highly specialized tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol) is not tomato specific but also occurs in Fol non-host plants. Can J Bot 85:347-351

    Article  CAS  Google Scholar 

  • Singh R, Adholeya A, Mukerji KG (2000) Mycorrhiza in control of soil-borne pathogens. In: Mukerji KG, Chamola BP, Singh J (eds.) Mycorrhizal biology. Kluwer, New York pp 173-196

    Google Scholar 

  • Smith S E, Read DJ (1997) Mycorrhizal symbiosis. Academic, London Sood SG (2003) Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45:219-227

    Google Scholar 

  • St-Arnaud M, Elsen A (2005) Interaction of arbuscular mycorrhizal fungi with soil-borne pathogens and non-pathogenic rhizosphere micro-organisms. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Heidelberg, pp 217-231

    Chapter  Google Scholar 

  • St-Arnaud M, Vujanovic V (2007) Effect of the arbuscular mycorrhizal symbiosis on plant dis-eases and pests. In: Hamel C, Plenchette C (eds). Mycorrhizae in crop production: applying knowledge. Haworth, Binghampton, N.Y. (in press)

    Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1995) Altered growth of Fusarium oxysporum f. sp. chrysanthemi in an in vitro dual culture system with the vesicular arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza 5:431-438

    Google Scholar 

  • Trotta A, Varese GC, Gnavi E, Fusconi A, Sampo S, Berta G (1996) Interactions between the soil-borne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185-209

    Google Scholar 

  • Vierheilig H (2004a) Regulatory mechanisms during the plant-arbuscular mycorrhizal fungus interaction. Can J Bot. 82:1166-1176

    Article  CAS  Google Scholar 

  • Vierheilig H (2004b) Further root colonization by arbuscular mycorrhizal fungi in already mycorrhizal plants is suppressed after a critical level of root colonization. J Plant Physiol 161:339-341

    Article  CAS  PubMed  Google Scholar 

  • Vierheilig H, Bago B (2005) Host and non-host impact on the physiology of the AM symbiosis. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Heidelberg, pp 139-158

    Chapter  Google Scholar 

  • Vierheilig H, Ocampo JA (1990) Effect of isothiocyanates on germination of spores of G. mosseae. Soil Biol Biochem 22:1161-1162

    Article  CAS  Google Scholar 

  • Vierheilig H, Ocampo JA (1991) Receptivity of various wheat cultivars to infection by VA-mycorrhizal fungi as influenced by inoculum potential and the relation of VAM effectiveness to succinic dehydrogenase activity of the mycelium in the roots. Plant Soil 133:291-296

    Article  CAS  Google Scholar 

  • Vierheilig H, Piché Y (2002) Signalling in arbuscular mycorrhiza: facts and hypotheses. In: Buslig B, Manthey J (eds) Flavonoids in cell function. Kluwer, New York, pp 23-39

    Google Scholar 

  • Vierheilig H, Alt M, Mohr U, Boller T, Wiemken A (1994) Ethylene biosynthesis and activities of chitinase and ß-1,3-glucanase in the roots of host and non-host plants of vesicular-arbuscular mycorrhizal fungi after inoculation with Glomus mosseae. J Plant Physiol 143:337-343

    CAS  Google Scholar 

  • Vierheilig H, Garcia-Garrido MJ, Wyss U, Piché Y (2000a) Systemic suppression of mycorrhizal colonization in barley roots already colonized by AM-fungi. Soil Biol Biochem 32:589-595

    Article  CAS  Google Scholar 

  • Vierheilig H, Gagnon H, Strack D, Maier W (2000b) Accumulation of cyclohexenone derivatives in barley, wheat and maize roots in response to inoculation with different arbuscular mycorrhizal fungi. Mycorrhiza 9:291-293

    Article  CAS  Google Scholar 

  • Vierheilig H, Lerat S, Piché Y (2003) Systemic inhibition of arbuscular mycorrhiza development by root exudates of cucumber plants colonized by Glomus mosseae. Mycorrhiza 13:167-170

    Article  CAS  PubMed  Google Scholar 

  • Villegas J, Williams RD, Nantais L, Archambault J, Fortin JA (1996) Effects of N source on pH and nutrient exchange of extramatrical mycelium in a mycorrhizal Ri T-DNA transformed root system. Mycorrhiza 6:247-251

    Article  CAS  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198-1227

    Article  Google Scholar 

  • Wyss P, Boller, T, Wiemken A (1991) Phytoalexin response is elicited by a pathogen (Rhizoctonia solani) but not by a mycorrhizal fungus (Glomus mosseae) in bean roots. Experientia 47:395-399

    Article  CAS  Google Scholar 

  • Xavier LJC, Boyetchko SM (2004) Arbuscular mycorrhizal fungi in plant disease control. In: Arora DK (ed) Fungal biotechnology in agricultural, food, and environmental applications. Dekker, New York, pp 183-194

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Vierheilig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vierheilig, H., Steinkellner, S., Khaosaad, T., Garcia-Garrido, J.M. (2008). The Biocontrol Effect of Mycorrhization on Soilborne Fungal Pathogens and the Autoregulation of the AM Symbiosis: One Mechanism, Two Effects?. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_15

Download citation

Publish with us

Policies and ethics