Extending Automated Compositional Verification to the Full Class of Omega-Regular Languages

  • Azadeh Farzan
  • Yu-Fang Chen
  • Edmund M. Clarke
  • Yih-Kuen Tsay
  • Bow-Yaw Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4963)

Abstract

Recent studies have suggested the applicability of learning to automated compositional verification. However, current learning algorithms fall short when it comes to learning liveness properties. We extend the automaton synthesis paradigm for the infinitary languages by presenting an algorithm to learn an arbitrary regular set of infinite sequences (an ω-regular language) over an alphabet Σ. Our main result is an algorithm to learn a nondeterministic Büchi automaton that recognizes an unknown ω-regular language. This is done by learning a unique projection of it on Σ* using the framework suggested by Angluin for learning regular subsets of Σ*.

References

  1. 1.
    Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learning assumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 548–562. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Angluin, D.: Learning regular sets from queries and counterexamples. Information and Computation 75(2), 87–106 (1987)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arnold, A.: A syntactic congruence for rational omega-language. Theoretical Computer Science 39, 333–335 (1985)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Proceedings of the 1960 International Congress on Logic, Methodology and Philosophy of Science, pp. 1–11 (1962)Google Scholar
  5. 5.
    Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational ω-languages. In: Main, M.G., Melton, A.C., Mislove, M.W., Schmidt, D., Brookes, S.D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 554–566. Springer, Heidelberg (1994)Google Scholar
  6. 6.
    Calbrix, H., Nivat, M., Podelski, A.: Sur les mots ultimement périodiques des langages rationnels de mots infinis. Comptes Rendus de l’Académie des Sciences 318, 493–497 (1994)MATHMathSciNetGoogle Scholar
  7. 7.
    Chaki, S., Clarke, E., Sinha, N., Thati, P.: Automated assume-guarantee reasoning for simulation conformance. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 534–547. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Farzan, A., Chen, Y., Clarke, E., Tsay, Y., Wang, B.: Extending automated compositional verification to the full class of omega-regular languages. Technical Report CMU-CS-2008-100, Carnegie Mellon University, Department of Computer Science (2008)Google Scholar
  10. 10.
    Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translations. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Gupta, A., McMillan, K.L., Fu, Z.: Automated assumption generation for compositional verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 420–432. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Hopcroft, J.E.: A n logn algorithm for minimizing states in a finite automaton. Technical report, Stanford University (1971)Google Scholar
  13. 13.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)MATHGoogle Scholar
  14. 14.
    Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Information and Computation 118(2), 316–326 (1995)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Manna, Z., Pnueli, A.: A hierarchy of temporal properties. Technical Report STAN-CS-87-1186, Stanford University, Department of Computer Science (1987)Google Scholar
  16. 16.
    Michel, M.: Complementation is more difficult with automata on infinite words. In: CNET, Paris (1988)Google Scholar
  17. 17.
    Perrin, D., Pin, J.E.: Infinite Words: Automata, Semigroups, Logic and Games. Academic Press, London (2003)Google Scholar
  18. 18.
    Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. Information and Computation 103(2), 299–347 (1993)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Tsay, Y., Chen, Y., Tsai, M., Wu, K., Chan, W.: GOAL: A Graphical Tool for Manipulating Büchi Automata and Temporal Formulae. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 466–471. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Van, D.L., Le Saëc, B., Litovsky, I.: Characterizations of rational omega-languages by means of right congruences. Theor. Comput. Sci. 143(1), 1–21 (1995)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Azadeh Farzan
    • 1
  • Yu-Fang Chen
    • 2
  • Edmund M. Clarke
    • 1
  • Yih-Kuen Tsay
    • 2
  • Bow-Yaw Wang
    • 3
  1. 1.Carnegie Mellon University 
  2. 2.National Taiwan University 
  3. 3.Academia Sinica 

Personalised recommendations