Skip to main content
  • 1879 Accesses

Abstract

Demyelination is divided into two types: primary and secondary. Primary demyelination is defined as the abnormality or dysfunction of the oligodendrocytes. Secondary demyelination is defined as changes of the myelin secondary to neuronal or axonal degeneration associated with ischemia, infection, or metabolic/ toxic disease. Demyelinating disease usually refers to the primary demyelination, which pathologically represents perivenous demyelination and inflammatory cell infiltration. Idiopathic inflammatory-demyelinating diseases comprises the spectrum of demyelinating diseases based on purely clinical considerations, including monophasic, multiphasic, and progressive disorders from a localized form to multifocal or diffuse variants [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Poser CM, Brinar W (2004) The nature of multiple sclerosis. Clin Neurol Neurosurg 106:159–171

    Article  PubMed  Google Scholar 

  2. Cañellas AR, Gols AR, Izquierdo JR, Subirana MT, Gairin XM (2007) Idiopathic inflammatory-demyelinating diseases of the central nervous system. Neuroradiology 49:393–409

    Article  PubMed  Google Scholar 

  3. Dawson J (1916) The histology of disseminated sclerosis. Transactions of the Royal Society of Edinburgh 50:517–5740

    Google Scholar 

  4. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, McFarland HF, Paty DW, Polman CH, Reingold SC, Sandberg-Wollheim M, Sibley W, Thompson A, van den Noort S, Weinshenker BY, Wolinsky JS (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127

    Article  PubMed  CAS  Google Scholar 

  5. Filippi M, Inglese M (2001) Overview of diffusion-weighted magnetic resonance studies in multiple sclerosis. J Neurol Sci 186 Suppl 1:S37–S43

    Article  PubMed  Google Scholar 

  6. Lisanti CJ, Asbach P, Bradley WG Jr. (2005) The ependymal “Dot-Dash” sign: an MR imaging finding of early multiple sclerosis. AJNR Am J Neuroradiol 26:2033–2036

    PubMed  Google Scholar 

  7. Palmer S, Bradley WG, Chen DY, Patel S (1999) Subcallosal striations: early findings of multiple sclerosis on sagittal, thin-section, fast FLAIR MR images. Radiology 210:149–153

    PubMed  CAS  Google Scholar 

  8. van Walderveen MA, Lycklama A, Nijeholt GJ, et al. (2001) Hypointense lesions on T1-weighted spin-echo magnetic resonance imaging: relation to clinical characteristics in subgroups of patients with multiple sclerosis. Arch Neurol 58:76–81

    Article  PubMed  Google Scholar 

  9. Loevner LA, Grossman RI, McGowan JC, Ramer KN, Cohen JA (1995) Characterization of multiple sclerosis plaques with T1-weighted MR and quantitative magnetization transfer. AJNR Am J Neuroradiol 16:1473–1479

    PubMed  CAS  Google Scholar 

  10. Loevner LA, Grossman RI, Cohen JA, Lexa FJ, Kessler D, Kolson DL (1995) Microscopic disease in normal-appearing white matter on conventional MR images in patients with multiple sclerosis: assessment with magnetization-transfer measurements. Radiology 196:511–515

    PubMed  CAS  Google Scholar 

  11. Tievsky AL, Ptak T, Farkas J (1999) Investigation of apparent diffusion coefficient and diffusion tensor anisotropy in acute and chronic multiple sclerosis lesion. Am J Neuroradiol 20:1491–1499

    PubMed  CAS  Google Scholar 

  12. Roychowdhury S, Maldjian JA, Grossman RI (2000) Multiple sclerosis: comparison of trace apparent diffusion coefficients with MR enhancement pattern of lesions. AJNR Am J Neuroradiol 21:869–874

    PubMed  CAS  Google Scholar 

  13. Castriota Scanderbeg A, Tomaiuolo F, Sabatini U, Nocentini U, Grasso MG, Caltagirone C (2000) Demyelinating plaques in relapsing-remitting and secondary-progressive multiple sclerosis: assessment with diffusion MR imaging. Am J Neuroradiol 21:862–868

    Google Scholar 

  14. Rovira A, Pericot I, Alonso J, Rio J, Grive E, Montalban X (2002) Serial diffusion-weighted MR imaging and proton MR spectroscopy of acute large demyelinating brain lesions: case report. Am J Neuroradiol 23:989–994

    PubMed  Google Scholar 

  15. Horsfield MA, Larsson HB, Jones DK, Gass A (1998) Diffusion magnetic resonance imaging in multiple sclerosis. J Neurol Neurosurg Psychiatry 64 Suppl 1:S80–S84

    PubMed  Google Scholar 

  16. Guo AC, MacFall JR, Provenzale JM (2002) Multiple sclerosis: diffusion tensor MR imaging for evaluation of normal-appearing white matter. Radiology 222:729–736

    Article  PubMed  Google Scholar 

  17. Gallo A, Rovaris M, Riva R, Ghezzi A, Benedetti B, Martinelli V, Falini A, Comi G, Filippi M (2005) Diffusion-tensor magnetic resonance imaging detects normal-appearing white matter damage unrelated to short-term disease activity in patients at the earliest clinical stage of multiple sclerosis. Arch Neurol 62:803–808

    Article  PubMed  Google Scholar 

  18. Poonawalla AH, Hasan KM, Gupta RK, Ahn CW, Nelson F, Wolinsky JS, Narayana PA (2008) Diffusion-tensor MR imaging of cortical lesions in multiple sclerosis: initial findings. Radiology 246:880–886

    Article  PubMed  Google Scholar 

  19. Karaarslan E, Altintas A, Senol U, Yeni N, Dincer A, Bayindir C, Karaagac N, Siva A (2002) Baló’s concentric sclerosis: clinical and radiologic features of five cases. AJNR Am J Neuroradiol 22:1362–1367

    Google Scholar 

  20. Capello E, Mancardi GL (2004) Marburg type and Balò’s concentric sclerosis: rare and acute variants of multiple sclerosis. Neurol Sci 25[Suppl 4]:S361–363

    Article  PubMed  Google Scholar 

  21. Caracciolo JT, Murtagh RD, Rojiani AM, Murtagh FR (2001) Pathognomonic MR imaging findings in Balo concentric sclerosis. AJNR Am J Neuroradiol 22:292–293

    PubMed  CAS  Google Scholar 

  22. Baló J (1927) A leukoenkephalitis periaxialis concentricaról. Magyar Orv Arch 28:108–124

    Google Scholar 

  23. Ball T, Malik O, Roncaroli F, Quest RA, Aviv RI (2007) Apparent diffusion coefficient changes and lesion evolution in Balo’s type demyelination-correlation with histopathology. Clin Radiol 62:498–503

    Article  PubMed  CAS  Google Scholar 

  24. Wiendl H, Weissert R, Herrlinger U, Krapf H, Küker W (2005) Diffusion abnormality in Balo’s concentric sclerosis: clues for the pathogenesis. Eur Neurol 53:42–44

    Article  PubMed  Google Scholar 

  25. Kavanagh EC, Heran MK, Fenton DM, Lapointe JS, Nugent RA, Graeb DA (2006) Diffusion-weighted imaging findings in Balo concentric sclerosis. Br J Radiol 79:e28–31

    Article  PubMed  CAS  Google Scholar 

  26. Obara S, Takeshima H, Awa R, Yonezawa H, Oyoshi T, Nagayama T, Hirano H, Niiro M, Kuratsu J (2003) Tumefactive myelinoclastic diffuse sclerosis—case report. Neurol Med Chir (Tokyo) 43:563–566

    Article  Google Scholar 

  27. Miyamoto N, Kagohashi M, Nishioka K, Fujishima K, Kitada T, Tomita Y, Mori K, Maeda M, Wada R, Matsumoto M, Mori H, Mizuno Y, Okuma Y (2006) An autopsy case of Schilder’s variant of multiple sclerosis (Schilder’s disease). Eur Neurol 55:103–107

    Article  PubMed  Google Scholar 

  28. Schilder P (1912) Zur kenntnis der sogenannten diffusen Sklerose. Z Ges Neurol Psychiatr 10:1–60

    Article  Google Scholar 

  29. Masdeu JC, Quinto C, Olivera C, Tenner M, Leslie D, Visintainer P (2000) Open-ring imaging sign: highly specific for atypical brain demyelination. Neurology 54:1427–1433

    PubMed  CAS  Google Scholar 

  30. Tenembaum S, Chitnis T, Ness J, Hahn JS (2007) International Pediatric MS Study Group. Acute disseminated encephalomyelitis. Neurology 68 [16 Suppl 2]:S23–36

    Article  PubMed  Google Scholar 

  31. Inglese M, Salvi F, Iannucci G, Mancardi GL, Mascalchi M, Filippi M (2002) Magnetization transfer and diffusion tensor MR imaging of acute disseminated encephalomyelitis. Am J Neuroradiol 23:267–272

    PubMed  Google Scholar 

  32. Harada M, Hisaoka S, Mori K, Yoneda K, Noda S, Nishitani H (2000) Differences in water diffusion and lactate production in two different types of postinfectious encephalopathy. J Magn Reson Imaging 11:559–563

    Article  PubMed  CAS  Google Scholar 

  33. Bernarding J, Braun J, Koennecke HC (2002) Diffusion-and perfusion-weighted MR imaging in a patient with acute demyelinating encephalomyelitis (ADEM). J Magn Reson Imaging 15:96–100

    Article  PubMed  Google Scholar 

  34. Balasubramanya KS, Kovoor JM, Jayakumar PN, Ravishankar S, Kamble RB, Panicker J, Nagaraja D (2007) Diffusion-weighted imaging and proton MR spectroscopy in the characterization of acute disseminated encephalomyelitis. Neuroradiology 49:177–183

    Article  PubMed  CAS  Google Scholar 

  35. Gibbs WN, Kreidie MA, Kim RC, Hasso AN (2005) Acute hemorrhagic leukoencephalitis: neuroimaging features and neuropathologic diagnosis. J Comput Assist Tomogr 29:689–693

    Article  PubMed  Google Scholar 

  36. Mader I, Wolff M, Niemann G, Küker W (2004) Acute haemorrhagic encephalomyelitis (AHEM): MRI findings. Neuropediatrics 35:143–146

    Article  PubMed  CAS  Google Scholar 

  37. Mader I, Herrlinger U, Klose U, Schmidt F, Küker W (2003) Progressive multifocal leukoencephalopathy: analysis of lesion development with diffusion-weighted MRI. Neuroradiology 45:717–121

    Article  PubMed  CAS  Google Scholar 

  38. Huisman TA, Boltshauser E, Martin E, Nadal D (2005) Diffusion tensor imaging in progressive multifocal leu koencephalopathy: early predictor for demyelination? AJNR Am J Neuroradiol 26:2153–2156

    PubMed  Google Scholar 

  39. Ohta K, Obara K, Sakauchi M, Obara K, Takane H, Yogo Y (2001) Lesion extension detected by diffusion-weighted magnetic resonance imaging in progressive multifocal leukoencephalopathy. J Neurol 248:809–811

    Article  PubMed  CAS  Google Scholar 

  40. Küker W, Mader I, Nägele T, Uhl M, Adolph C, Klose U, Herrlinger U (2006) Progressive multifocal leukoencephalopathy: value of diffusion-weigh ted and contrast-enhanced magnetic resonance imaging for diagnosis and treatment control. Eur J Neurol 13:819–826

    Article  PubMed  Google Scholar 

  41. Yamada K, Patel U, Shrier DA, Tanaka H, Chang JK, Numaguchi Y (1998) MR imaging of CNS tractopathy: wallerian and transneuronal degeneration. AJR Am J Roentgenol 171:813–818

    PubMed  CAS  Google Scholar 

  42. Gupta RK, Saksena S, Hasan KM, Agarwal A, Haris M, Pandey CM, Narayana PA (2006) Focal Wallerian degeneration of the corpus callosum in large middle cerebral artery stroke: serial diffusion tensor imaging. J Magn Reson Imaging 24:549–555

    Article  PubMed  Google Scholar 

  43. O’uchi T (1998) Wallerian degeneration of the pontocerebellar tracts after pontine hemorrhage. Int J Neuroradiol 4:171–177

    Google Scholar 

  44. Mazumdar A, Mukherjee P, Miller JH, Malde H, McKinstry RC (2003) Diffusion-weighted imaging of acute corticospinal tract injury preceding Wallerian degeneration in the maturing human brain. AJNR Am J Neuroradiol 24:1057–1066

    PubMed  Google Scholar 

  45. Castillo M, Mukheriji SK (1999) Early abnormalities related to postinfarction wallerian degeneration: evaluation with MR diffusion-weighted imaging. JCAT 23:1004–1007

    CAS  Google Scholar 

  46. Kang DW, Chu K, Yoon BW, Song IC, Chang KH, Roh JK (2000) Diffusion-weighted imaging in wallerian degeneration. J Neurol Sci 178:167–169

    Article  PubMed  CAS  Google Scholar 

  47. Pierpaoli C, Barnett A, Pajevic S, Chen R, Penix LR, Virta A, Basser P (2001) Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage 13:1174–1185

    Article  PubMed  CAS  Google Scholar 

  48. Thomalla G, Glauche V, Weiller C, Röther J (2005) Time course of wallerian degeneration after ischaemic stroke revealed by diffusion tensor imaging. J Neurol Neurosurg Psychiatry 76:266–268

    Article  PubMed  CAS  Google Scholar 

  49. Thomalla G, Glauche V, Koch MA, Beaulieu C, Weiller C, Röther J (2004) Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke. Neuroimage 22:1767–1774

    Article  PubMed  Google Scholar 

  50. Werring DJ, Toosy AT, Clark CA, Parker GJ, Barker GJ, Miller DH, Thompson AJ (2000) Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke. J Neurol Neurosurg Psychiatry 69:269–272

    Article  PubMed  CAS  Google Scholar 

  51. Ogawa T, Okudera T, Inugami A, et al. (1997) Degeneration of the ipsilateral substantia nigra after striatal infarction: evaluation with MR imaging. Radiology 204:847–851

    PubMed  CAS  Google Scholar 

  52. Kinoshita T, Moritani T, Shrier DA, et al. (2002) Secondary degeneration of the Substantia Nigra and Corticospinal tract after hemorrhagic middle cerebral artery infarction; Diffusion-weighted MR findings. Magnetic Resonance in Medical Sciences 1:175–198

    Article  PubMed  Google Scholar 

  53. Nakase M, Tamura A, Miyasaka N, et al. (2001) Astrocytic swelling in the ipsilateral substantia niagra after occlusion of the middle cerebral artery in rats. Am J Neuroradiol 22:660–663

    Google Scholar 

  54. Ogawa T, Yoshida Y, Okudera T, Noguchi K, Kado H, Uemura K (1997) Secondary thalamic degeneration after cerebral infarction in the middle cerebral artery distribution: evaluation with MR imaging. Radiology 204:255–262

    PubMed  CAS  Google Scholar 

  55. Nakane M, Tamura A, Sasaki Y, Teraoka A (2002) MRI of secondary changes in the thalamus following a cerebral infarct. Neuroradiology 44:915–920

    Article  PubMed  CAS  Google Scholar 

  56. Moon WJ, Na DG, Kim SS, Ryoo JW, Chung EC (2005) Diffusion abnormality of deep gray matter in external capsular hemorrhage. AJNR Am J Neuroradiol 26:229–35

    PubMed  Google Scholar 

  57. Cataldi ML, Restivo O, Reggio E, Restivo DA, Reggio A (2000) Deafness: an unusual onset of genetic Creutzfeldt-Jakob disease. Neurol Sci 21:53–55

    Article  PubMed  CAS  Google Scholar 

  58. Tsuji Y, Kanamori H, Murakami G, Yokode M, Mezaki T, Doh-ura K, Taniguchi K, Matsubayashi K, Fukuyama H, Kita T, Tanaka M (2004) Heidenhain variant of Creutzfeldt-Jakob disease: diffusion-weighted MRI and PET characteristics. J Neuroimaging 14:63–66

    Article  PubMed  Google Scholar 

  59. Johnson RT, Gibbs CJ Jr (1998) Creutzfeldt-Jakob disease and related transmissible spongiform encephalopathies. N Engl J Med 339:1994–2004

    Article  PubMed  CAS  Google Scholar 

  60. Brown P, Preece M, Brandel JP, et al. (2000) Iatrogenic Creutzfeldt-Jakob disease at the millennium. Neurology 55:1075–1081

    PubMed  CAS  Google Scholar 

  61. Lucassen PJ, Williams A, Chung WCJ, et al. (1995) Detection of apoptosis in murine scrapie. Neuroscience Letters 198:185–188

    Article  PubMed  CAS  Google Scholar 

  62. Zeidler M, Sellar RJ, Collie DA, et al. (2000) The pulvinar sign on magnetic resonance imaging in variant Creutzfeldt-Jakob disease. Lancet 355:1412–1418

    Article  PubMed  CAS  Google Scholar 

  63. Molloy S, O’Laoide R, Brett F, Farrell M (2000) The “pulvinar” sign in variant Creutzfeldt-Jakob disease. Am J Roentgenol 175:555–556

    CAS  Google Scholar 

  64. Haik S, Brandel JP, Oppenheim C, et al. (2002) Sporadic CJD clinically mimicking variant CJD with bilateral increased signal in the pulvinar. Neurology 58:148–149

    PubMed  CAS  Google Scholar 

  65. Matsusue E, Kinoshita T, Sugihara S, Fujii S, Ogawa T, Ohama E (2004) White matter lesions in panencephalo-pathic type of Creutzfeldt-Jakob disease: MR imaging and pathologic correlations. AJNR Am J Neuroradiol 25:910–918

    PubMed  Google Scholar 

  66. Shiga Y, Miyazawa K, Sato S, Fukushima R, Shibuya S, Sato Y, Konno H, Doh-ura K, Mugikura S, Tamura H, Higano S, Takahashi S, Itoyama Y (2004) Diffusion-weighted MRI abnormalities as an early diagnostic marker for Creutzfeldt-Jakob disease. Neurology 63:443–449

    PubMed  CAS  Google Scholar 

  67. Young GS, Geschwind MD, Fischbein NJ, Martindale JL, Henry RG, Liu S, Lu Y, Wong S, Liu H, Miller BL, Dillon WP (2005) Diffusion-weighted and fluid-attenuated inversion recovery imaging in Creutzfeldt-Jakob disease: high sensitivity and specificity for diagnosis. AJNR Am J Neuroradiol 26:1551–1162

    PubMed  Google Scholar 

  68. Kallenberg K, Schulz-Schaeffer WJ, Jastrow U, Poser S, Meissner B, Tschampa HJ, Zerr I, Knauth M (2006) Creutzfeldt-Jakob disease: comparative analysis of MR imaging sequences. AJNR Am J Neuroradiol 27:1459–1462

    PubMed  CAS  Google Scholar 

  69. Ukisu R, Kushihashi T, Tanaka E, Baba M, Usui N, Fujisawa H, Takenaka H (2006) Diffusion-weighted MR imaging of early-stage Creutzfeldt-Jakob disease: typical and atypical manifestations. Radiographics 26 [Suppl 1]:S191–204

    Article  PubMed  Google Scholar 

  70. Ukisu R, Kushihashi T, Kitanosono T, Fujisawa H, Takenaka H, Ohgiya Y, Gokan T, Munechika H (2005) Serial diffusion-weighted MRI of Creutzfeldt-Jakob disease. AJR Am J Roentgenol 184:560–566

    PubMed  Google Scholar 

  71. Demaerel P, Baert AL, Vanopdenbosch, et al. (1997) Diffusion-weighted magnetic resonance imaging in Creutzfeldt-Jakob disease. Lancet 349:847–848

    Article  PubMed  CAS  Google Scholar 

  72. Bahn MM, Parchi P (1999) Abnormal diffusion-weighted magnetic resonance images in Creutzfedlt-Jakob disease. Arch Neurol 56:577–583

    Article  PubMed  CAS  Google Scholar 

  73. Mittal S, Farmer P, Kalina P, Kingsley PB, Halperin J (2002) Correlation of diffusion-weighted magnetic resonance imaging with neuropathology in Creutzfeldt-Jakob disease. Arch Neurol 59:128–134

    Article  PubMed  Google Scholar 

  74. Murata T, Shiga Y, Higano S, Takahashi S, Mugikura S (2002) Conspicuity and evolution of lesions in Creutzfeldt-Jakob disease at diffusion-weighted imaging. AJNR Am J Neuroradiol 23:1164–1172

    PubMed  Google Scholar 

  75. Dearmond MA, Kretzschmar HA, Prusiner SB (2002) Prion diseases. In: Graham DI, Lantos PL (eds) Greenfields neuropathology, 7(suth) edn, pp 273–323

    Google Scholar 

  76. Matoba M, Tonami H, Miyaji H, Yokota H, Yamamoto I (2001) Creutzfeldt-Jakob disease: serial changes on diffusion-weighted MRI. J Comput Assist Tomogr 25:274–277

    Article  PubMed  CAS  Google Scholar 

  77. Ellis CM, Simmons A, Jones DK, et al. (1999) Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology 53:1051–1058

    PubMed  CAS  Google Scholar 

  78. Aoki S, Iwata NK, Masutani Y, Yoshida M, Abe O, Ugawa Y, Masumoto T, Mori H, Hayashi N, Kabasawa H, Kwak S, Takahashi S, Tsuji S, Ohtomo K (2005) Quantitative evaluation of the pyramidal tract segmented by diffusion tensor tractography: feasibility study in patients with amyotrophic lateral sclerosis. Radiat Med 23:195–199

    PubMed  Google Scholar 

  79. Wang S, Poptani H, Bilello M, Wu X, Woo JH, Elman LB, McCluskey LF, Krejza J, Melhem ER (2006) Diffusion tensor imaging in amyotrophic lateral sclerosis: volumetric analysis of the corticospinal tract. AJNR Am J Neuroradiol 27:1234–1238

    PubMed  CAS  Google Scholar 

  80. Iwata NK, Aoki S, Okabe S, Arai N, Terao Y, Kwak S, Abe O, Kanazawa I, Tsuji S, Ugawa Y (2008) Evaluation of corticospinal tracts in ALS with diffusion tensor MRI and brain-stem stimulation. Neurology 70:528–532

    Article  PubMed  CAS  Google Scholar 

  81. Abe O, Yamada H, Masutani Y, Aoki S, Kunimatsu A, Yamasue H, Fukuda R, Kasai K, Hayashi N, Masumoto T, Mori H, Soma T, Ohtomo K (2004) Amyotrophic lateral sclerosis: diffusion tensor tractography and voxel-based analysis. NMR Biomed 17:411–416

    Article  PubMed  Google Scholar 

  82. Graham JM, Papadakis N, Evans J, Widjaja E, Romanowski CA, Paley MN, Wallis LI, Wilkinson ID, Shaw PJ, Griffiths PD (2004) Diffusion tensor imaging for the assessment of upper motor neuron integrity in ALS. Neurology 63:2111–2119

    PubMed  CAS  Google Scholar 

  83. Ingelsson M, Ramasamy K, Russ C, Freeman SH, Orne J, Raju S, Matsui T, Growdon JH, Frosch MP, Ghetti B, Brown RH, Irizarry MC, Hyman BT (2007) Increase in the relative expression of tau with four microtubule binding repeat regions in frontotemporal lobar degeneration and progressive supranuclear palsy brains. Acta Neuropathol 114:471–479

    Article  PubMed  CAS  Google Scholar 

  84. Ngai S, Tang YM, Du L, Stuckey S (2006) Hyperintensity of the middle cerebellar peduncles on fluid-attenuated inversion recovery imaging: variation with age and implications for the diagnosis of multiple system atrophy. AJNR Am J Neuroradiol 27:2146–2148

    PubMed  CAS  Google Scholar 

  85. Taoka T, Kin T, Nakagawa H, Hirano M, Sakamoto M, Wada T, Takayama K, Wuttikul C, Iwasaki S, Ueno S, Kichikawa K (2007) Diffusivity and diffusion anisotropy of cerebellar peduncles in cases of spinocerebellar degenerative disease. Neuroimage 37:387–393

    Article  PubMed  Google Scholar 

  86. Shiga K, Yamada K, Yoshikawa K, Mizuno T, Nishimura T, Nakagawa M (2005) Local tissue anisotropy decreases in cerebellopetal fibers and pyramidal tract in multiple system atrophy. J Neurol 252:589–596

    Article  PubMed  Google Scholar 

  87. Oba H, Yagishita A, Terada H, Barkovich AJ, Kutomi K, Yamauchi T, Furui S, Shimizu T, Uchigata M, Matsumura K, Sonoo M, Sakai M, Takada K, Harasawa A, Takeshita K, Kohtake H, Tanaka H, Suzuki S (2005) New and reliable MRI diagnosis for progressive supranuclear palsy. Neurology 64:2050–2055

    Article  PubMed  CAS  Google Scholar 

  88. Blain CR, Barker GJ, Jarosz JM, Coyle NA, Landau S, Brown RG, Chaudhuri KR, Simmons A, Jones DK, Williams SC, Leigh PN (2006) Measuring brain stem and cerebellar damage in parkinsonian syndromes using diffusion tensor MRI. Neurology 67:2199–2205

    Article  PubMed  CAS  Google Scholar 

  89. Nilsson C, Markenroth Bloch K, Brockstedt S, Lätt J, Widner H, Larsson EM (2007) Tracking the neurodegeneration of parkinsonian disorders-a pilot study. Neuroradiology 49:111–119

    Article  PubMed  CAS  Google Scholar 

  90. Moritani T (2002) Classification of brain edema. In Aoki S, Abe O eds Koredewakaru Diffusion MRI, Tokyo: Shujunsha. 128–137

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Demyelinating and Degenerative Disease. In: Diffusion-Weighted MR Imaging of the Brain. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78785-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78785-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78784-6

  • Online ISBN: 978-3-540-78785-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics