Skip to main content

Abstract

Stroke is the third leading cause of death in the USA, and cerebral infarction is the most common cause of disability among adult Americans. Until recently these patients were mainly imaged with computed tomography (CT) to establish if the cause of stroke was ischemic or hemorrhagic. Treatment was above all aimed to reduce the risk for further embolic events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333:1581–1587

    Article  Google Scholar 

  2. Hacke W (2005) The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 36:66–73

    Article  PubMed  CAS  Google Scholar 

  3. Mohr J, Biller J, Hial S, et al. (1995) Magnetic resonance versus computed tomographic imaging in acute stroke. Stroke 26:807–812

    PubMed  CAS  Google Scholar 

  4. Moseley ME, Kucharczyk J, Mintorovitch J, et al. (1990) Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR Am. J. Neuroradiol 11:423–429

    PubMed  CAS  Google Scholar 

  5. Marks MP, De Crespigny A, Lentz D, et al. (1996) Acute and chronic stroke: navigated spin-echo diffusion-weighted MR imaging. Radiology 199:403–408

    PubMed  CAS  Google Scholar 

  6. Gonzalez RG, Schaefer PW, Buonanno FS, et al. (1999) Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology 210:155–162

    PubMed  CAS  Google Scholar 

  7. Lovblad K, Laubach H, Baird A, et al. (1998) Clinical experience with diffusion-weighted MR in patients with acute stroke. AJNR Am J Neuroradiol 19: 1061–1066

    PubMed  CAS  Google Scholar 

  8. Chien D, Kwong KK, Gress DR, et al. (1992) MR diffusion imaging of cerebral infarction in humans. AJNR Am J Neuroradiol 13:1097–1102

    PubMed  CAS  Google Scholar 

  9. Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217:331–345

    PubMed  CAS  Google Scholar 

  10. Gudbjartsson H, Maier SE, Mulkern RV, et al. (1996) Line scan diffusion imaging. Magn Reson Med 36:509–519

    Article  PubMed  CAS  Google Scholar 

  11. de Crespigny AJ, Marks MP, Enzmann DR, et al. (1995) Navigated diffusion imaging of normal and ischemic human brain. Magn Reson Med 33:720–728

    Article  PubMed  Google Scholar 

  12. Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217:331–345

    PubMed  CAS  Google Scholar 

  13. Lefkowitz D, LaBenz M, Nudo Sr, et al. (1999) Hyperacute ischemic stroke missed by diffusion-weighted imaging. AJNR Am J Neuroradiol 20:1871–1875

    PubMed  CAS  Google Scholar 

  14. Wang PYK, Barker PB, Wityk RJ, et al. (1999) Diffusion-negative stroke: a report of two cases. AJNR Am J Neuroradiol 20:1876–1880

    PubMed  CAS  Google Scholar 

  15. Benveniste H, Hedlund LW, Johnson GA (1992) Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy. Stroke 23:746–754

    PubMed  CAS  Google Scholar 

  16. Mintorovitch J, Yang GY, Shimizu H, et al. (1994) Diffusion-weighted magnetic resonance imaging of acute focal cerebral ischemia: comparison of signal intensity with changes in brain water and Na+,K(+)-ATPase activity. J Cereb Blood Flow Metab 14:332–336

    PubMed  CAS  Google Scholar 

  17. Sykova E, Svoboda J, Polak J, et al. (1994) Extracellular volume fraction and diffusion characteristics during progressive ischemia and terminal anoxia in the spinal cord of the rat. J Cereb Blood Flow Metab 14:301–311

    PubMed  CAS  Google Scholar 

  18. Niendorf T, Dijkhuizen R, Norris D, et al. (1996) Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion weighted imaging. Magn Reson Med 36: 847–857

    Article  PubMed  CAS  Google Scholar 

  19. Provenzale JM, Sorensen AG (1999) Diffusion-weighted MR imaging in acute stroke: theoretic considerations and clinical applications. AJR Am J Radiol 173:1459–1467

    CAS  Google Scholar 

  20. Keller E, Flacke S, Urbach H, Schild H (1999) Diffusion-and perfusion-weighted magnetic resonance imaging in deep cerebral venous thrombosis. Stroke 30:1144–1146

    PubMed  CAS  Google Scholar 

  21. Busza AL, Allen KL, King MD, et al. (1992) Diffusion-weighted imaging studies of cerebral ischemia in gerbils. Potential relevance to energy failure. Stroke 23: 1602–1612

    PubMed  CAS  Google Scholar 

  22. Burdette JH, Elster AD, Ricci PE (1999) Acute cerebral infarction: quantification of spin-density and T2 shine-through phenomena on diffusion-weighted MR images. Radiology 212:333–339

    PubMed  CAS  Google Scholar 

  23. Grant PE, He J, Halpern EF, Wu O, Schaefer PW, et al. (2001) Frequency and clinical context of decreased apparent diffusion coefficient reversal in the human brain. Radiology 221:43–50

    Article  PubMed  CAS  Google Scholar 

  24. Fiebach, JB, Jansen O, Schellinger PD, et al. (2002) Serial analysis of the apparent diffusion coefficient time course in human stroke. Neuroradiology 44:294–298

    Article  PubMed  CAS  Google Scholar 

  25. Hasegawa Y, Fisher M, Latour L, et al. (1994) MRI diffusion mapping of reversible and irreversible ischemic injury in focal brain ischemia. Neurology 44:1484–1490

    PubMed  CAS  Google Scholar 

  26. Dardzinski B, Sotak C, Fisher M, et al. (1993) Apparent diffusion coefficient mapping of experimental focal cerebral ischemia using diffusion-weighted echo-planar imaging. Magn Reson Med 30:318–325

    Article  PubMed  CAS  Google Scholar 

  27. Singer M, Chong J, Lu D, et al. (1998) Diffusion-weighted MRI in acute subcortical infarction. Stroke 29:133–136

    PubMed  CAS  Google Scholar 

  28. Desmond PM, Lovell AC, Rawlinson AA, et al. (2001) The value of apparent diffusion coefficient maps in early cerebral ischemia. AJNR Am J Neuroradiol 22:1260–1267

    PubMed  CAS  Google Scholar 

  29. Huang IJ, Chen CY, Chung HW, et al. (2001) Time course of cerebral infarction in the middle cerebral arterial territory: deep watershed versus territorial subtypes on diffusion-weighted MR images. Radiology 221:35–42

    Article  PubMed  CAS  Google Scholar 

  30. Kidwell CS, Saver JL, Mattiello J, et al. (2000) Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol 47:462–469

    Article  PubMed  CAS  Google Scholar 

  31. Burdette JH, Ricci PE, Petitti N, et al. (1998) Cerebral infarction: time course of signal intensity changes on diffusion-weighted MR images. Am J Radiol 171:791–795

    CAS  Google Scholar 

  32. Provenzale JM, Jahan R, Naidich TP, et al. (2003) Assessment of the patient with hyperacute stroke: imaging and therapy. Radiology 229:347–359

    Article  PubMed  Google Scholar 

  33. Mukherjee P, Bahn MM, McKinstry RC, et al. (2000) Differences between gray and white matter water diffusion in stroke: diffusion-tensor MR imaging in 12 patients. Radiology 215:211–220

    PubMed  CAS  Google Scholar 

  34. Krueger K, Kugel H, Grond M, et al. (2000) Late resolution of diffusion-weighted MRI changes in a patient with prolonged reversible ischemic neurological deficit after thrombolytic therapy. Stroke 31:2715–2718

    PubMed  CAS  Google Scholar 

  35. Burdette JH, Elster AD, Ricci PE (1999) Acute cerebral infarction: quantification of spin-density and T2 shine-through phenomena on diffusion-weighted MR images. Radiology 212:333–339

    PubMed  CAS  Google Scholar 

  36. Fitzek C, Tintera J, Muller-Forell W, et al. (1998) Differentiation of recent and old cerebral infarcts by diffusion-weighted MRI. Neuroradiology 40:778–782

    Article  PubMed  CAS  Google Scholar 

  37. Pan Foni L, Garcia GH, Gutierreg JA (1996) Cerebral white matter is highly vulnerable to ischemia. Stroke 27:1641–1647

    Google Scholar 

  38. Kuroiwa T, Nagaoka T, Ueki M, et al. (1998) Different apparent diffusion coefficient: water content correlations of gray and white matter during early ischemia. Stroke 29:859–865

    PubMed  CAS  Google Scholar 

  39. Fiehler J, Knudsen K, Kucinski T, et al. (2004) Predictors of apparent diffusion coefficient normalization in stroke patients. Stroke 35:514–519

    Article  PubMed  Google Scholar 

  40. Caplan LR, Mohr PJ, Kistler JP, Koroshetz W (1997) Should thrombolytic therapy be the first-line treatment for acute ischemic stroke? N Engl J Med 337:1309–1310

    Article  PubMed  CAS  Google Scholar 

  41. Yoshikawa T, Abe O, Tsuchiya K, et al. (2002) Diffusion-weighted magnetic resonance imaging of dural sinus thrombosis. Neuroradiology 44:481–488

    Article  PubMed  CAS  Google Scholar 

  42. Forbes KP, Pipe JG, Heiserman JE (2001) Evidence for cytotoxic edema in the pathogenesis of cerebral venous infarction. AJNR Am J Neuroradiol 22:450–455

    PubMed  CAS  Google Scholar 

  43. Leach JL, Fortuna RB, Jones BV, et al. (2006) Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls. Radio Graphics 26:S19–S41

    Google Scholar 

  44. Ducreux D, Oppenheim C, Vandamme X, et al. (2001) Diffusion-weighted imaging patterns of brain damage associated with cerebral venous thrombosis. AJNR Am J Neuroradiol 22:261–268

    PubMed  CAS  Google Scholar 

  45. Favrole P, Guichard JP, Crassard I, et al. (2004) Diffusion-weighted imaging of intravascular clots in cerebral venous thrombosis. Stroke 35:99–103

    Article  PubMed  Google Scholar 

  46. Geijer B, Lindgren A, Brockstedt S, et al. (2001) Persistent high-signal on diffusion-weighted MRI in the late stages of small cortical and lacunar ischemic lesions. Neuroradiology 43:115–122

    Article  PubMed  CAS  Google Scholar 

  47. Noguchi K, Nagayoshi T, Watanabe N, et al. (1998) Diffusion-weighted echo-planar MRI of lacunar infarcts. Neuroradiology 40:448–451

    Article  PubMed  CAS  Google Scholar 

  48. Kuhl CK, Gieseke J, von Falkenhausen M, et al. (2005) Sensitivity Encoding for Diffusion-weighted MR Imaging at 3.0 T: Intraindividual Comparative Study. Radiology 234:517–526

    Article  PubMed  Google Scholar 

  49. Forbes KP, Pipe JG, Karis JP, et al. (2002) Improved Image Quality and Detection of Acute Cerebral Infarction with PROPELLER Diffusion-weighted MR Imaging. Radiology 225:551–555

    Article  PubMed  Google Scholar 

  50. Suwanwela NC, Leelacheavasit N (2002) Isolated corpus callosal infarction secondary to pericallosal artery disease presenting as alien hand syndrome. J Neurosurg Psychiatry 72:533–536

    CAS  Google Scholar 

  51. Riedy G, Melhem ER. (2003) Acute infarct of the corpus callosum: appearance on diffusion-weighted MR imaging and MR spectroscopy. J Magn Reson Imaging 18:255–259

    Article  PubMed  Google Scholar 

  52. Tong DC, Adami A, Moseley ME, et al. (2000) Relationship between apparent diffusion coefficient and subsequent hemorrhagic transformation following acute ischemic stroke. Stroke 31:2378–2384

    PubMed  CAS  Google Scholar 

  53. Lansberg MG, Thijs VN, Bammer R, et al. (2007) Risk Factors of symptomatic intracerebral hemorrhage after tPA therapy for acute stroke. Stroke 38:2275–2278

    Article  PubMed  CAS  Google Scholar 

  54. Sorensen AG, Wu O, Copen WA, et al (1999) Human acute cerebral ischemia: detection of changes in water diffusion anisotropy by using MR imaging. Radiology 212:785–792

    PubMed  CAS  Google Scholar 

  55. Mukherjee P, Bahn MM, McKinstry RC, et al. (2000) Differences between gray matter and white matter water diffusion in stroke: diffusion-tensor MR imaging in 12 patients. Radiology 215:211–220

    PubMed  CAS  Google Scholar 

  56. Yang Q, Tress BM, Barber PA, et al. (1999) Serial study of apparent diffusion coefficient and anisotropy in patients with acute stroke. Stroke 30:2382–2390

    PubMed  CAS  Google Scholar 

  57. Ozsunard Y, Granta PE, Huismana TAGM, et al. (2004) Evolution of water diffusion and anisotropy in hyperacute stroke: significant correlation between fractional anisotropy and T2. AJNR Am J Neuroradiol 25:699–705

    Google Scholar 

  58. Bihan DL, Mangin JF, Poupon C, et al. (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546

    Article  PubMed  Google Scholar 

  59. Stieltjes B, Kaufmann WE, van Zijl PC, et al. (2001) Diffusion tensor imaging and axonal tracking in the human brainstem. Neuroimage 14:723–735

    Article  PubMed  CAS  Google Scholar 

  60. Lee SK, Kim DI, Kim J, et al. (2005) Diffusion-tensor MR imaging and fiber tractography: a new method of describing aberrant fiber connections in developmental CNS anomalies. Radio Graphics 25:53–65

    Google Scholar 

  61. Kunimatsu A, Aoki S, Masutani Y. et al. (2003) Three-dimensional white matter tractography by diffusion tensor imaging in ischaemic stroke involving the corticospinal tract. Neuroradiology 45:532–535

    Article  PubMed  CAS  Google Scholar 

  62. Yamada K, Ito H, Nakamura H, et al. (2004) Stroke patients’ evolving symptoms assessed by tractography. J Magn Reson Imaging 20:923–929

    Article  PubMed  Google Scholar 

  63. Konishi J, Yamada K, Kizu O, et al. (2005) MR tractography for the evaluation of functional recovery from lenticulostriate infarcts. Neurology 64:108–113

    PubMed  CAS  Google Scholar 

  64. Yoshiura T, Wu O, Zaheer A, et al (2001) Highly-diffusion-sensitized MRI of brain: dissociation of gray and white matter. Magn Reson Med 45:734–740

    Article  PubMed  CAS  Google Scholar 

  65. Meyer JR, Gutierrez A, Mock B, et al (2000) High-b-value diffusion-weighted MR imaging of suspected brain infarction. Am J Neuroradiol 21:1821–1829

    PubMed  CAS  Google Scholar 

  66. Burdette JH, Elster AD (2002) Diffusion-weighted imaging of cerebral infarctions: are higher B-values better? J Comut Assist Tomogr 26:622–627

    Article  Google Scholar 

  67. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    Article  CAS  Google Scholar 

  68. Kim HJ, Choi CG, Lee DH, et al (2005) High-b-value diffusion-weighted MR imaging of hyperacute ischemic stroke at 1.5T. Am J Neuroradiol 26:208–215

    PubMed  Google Scholar 

  69. Toyoda K, Kitai S, Ida M, et al (2007) Usefulness of high-b-value diffusion-weighted imaging in acute cerebral infarction. Eur Radiol 17:1212–1220

    Article  PubMed  Google Scholar 

  70. Molyneux PD, Tubridy N, Parker GJ, et al. (1998) The effect of section thickness on MR lesion detection and quantification in multiple sclerosis. AJNR Am J Neuroradiol 19:1715–1720

    PubMed  CAS  Google Scholar 

  71. Bradley WG, Glenn BJ (1987) The effect of variation in slice thickness and interslice gap on MR lesion detection. AJNR Am J Neuroradiol 8:1057–1062

    PubMed  CAS  Google Scholar 

  72. Nakamura H, Yamada K, Kizu O, et al. (2005) Effect of thin-section diffusion-weighted MR imaging on stroke diagnosis. AJNR Am J Neuroradiol 26:560–565

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohgiya, Y., de Guzman, R. (2009). Infarction. In: Diffusion-Weighted MR Imaging of the Brain. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78785-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78785-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78784-6

  • Online ISBN: 978-3-540-78785-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics