Skip to main content
  • 1865 Accesses

Abstract

The water content of the pediatric brain is considerably higher than that of the adult brain. This makes it more difficult to diagnose ischemic and other lesions in pediatric patients using computed tomography (CT) and MR imaging. Diffusion-weighted (DW) imaging is sensitive to alteration in diffusion of water molecules, and this technique can help overcome some of these difficulties [1]. DW imaging is primarily useful for detecting and characterizing ischemic lesions, but also for evaluation of myelinization by demonstrating anisotropy of the white matter earlier than conventional MR imaging [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Roley HA, Grant PE, Roberts TPL (1999) Diffusion MR imaging. Theory and applications. Neuroimaging Clin N Am 9:343–361

    Google Scholar 

  2. Neil JJ, Shiran SI, McKinstry RC, et al. (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209:57–66

    PubMed  CAS  Google Scholar 

  3. Wimberger DM, Roberts TP, Barkobich AJ, et al. (1995) Identification of “premyelination” by diffusion-weighted MRI. JCAT 19:28–33

    CAS  Google Scholar 

  4. Tanner SF, Ramenghi LA, Ridgway JP, et al. (2000) Quantitative comparison of intrabrain diffusion in adults and preterm and term neonates and infants. AJR Am J Roentgenol 174:1643–1649

    PubMed  CAS  Google Scholar 

  5. Morris MC, Zimmerman RA, Bilaniuk LT, et al. (1999) Changes in brain water diffusion during childhood. Neuroradiology 41:929–934

    Article  Google Scholar 

  6. Prayer D, Barkovich AJ, Kirschner DA, Prayer LM, Roberts TP, Kucharczyk J, Moseley ME (2001) Visualization of non-structural changes in early white matter development on diffusion-weighted MR images: evidence supporting premyelination anisotropy. AJNR Am J Neuroradiol 22:1572–1576

    PubMed  CAS  Google Scholar 

  7. Bui T, Daire JL, Chalard F, Zaccaria I, Alberti C, Elmaleh M, Garel C, Luton D, Blanc N, Sebag G. (2006) Microstructural development of human brain assessed in utero by diffusion tensor imaging. Pediatr Radiol 36:1133–1140

    Article  PubMed  Google Scholar 

  8. Counsell SJ, Shen Y, Boardman JP, Larkman DJ, Kapellou O, Ward P, Allsop JM, Cowan FM, Hajnal JV, Edwards AD, Rutherford MA (2006) Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics 117:376–386

    Article  PubMed  Google Scholar 

  9. Arzoumanian Y, Mirmiran M, Barnes PD, Woolley K, Ariagno RL, Moseley ME, Fleisher BE, Atlas SW (2003) Diffusion tensor brain imaging findings at term-equivalent age may predict neurologic abnormalities in low birth weight preterm infants. AJNR Am J Neuroradiol 24:1646–1653

    PubMed  CAS  Google Scholar 

  10. Neil JJ, Shiran SI, McKinstry RC, Schefft GL, Snyder AZ, Almli CR, Akbudak E, Aronovitz JA, Miller JP, Lee BC, Conturo TE. (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209:57–66

    PubMed  CAS  Google Scholar 

  11. Forbes KP, Pipe JG, Bird CR (2002) Changes in brain water diffusion during the 1st year of life. Radiology 222:405–409

    Article  PubMed  Google Scholar 

  12. Provenzale JM, Liang L, DeLong D, White LE (2007) Diffusion tensor imaging assessment of brain white matter maturation during the first postnatal year. AJR Am J Roentgenol 189:476–486

    Article  PubMed  Google Scholar 

  13. McGraw P, Liang L, Provenzale JM (2002) Evaluation of normal age-related changes in anisotropy during infancy and childhood as shown by diffusion tensor imaging. AJR Am J Roentgenol 179:1515–1522

    PubMed  Google Scholar 

  14. Hermoye L, Saint-Martin C, Cosnard G, Lee SK, Kim J, Nassogne MC, Menten R, Clapuyt P, Donohue PK, Hua K, Wakana S, Jiang H, van Zijl PC, Mori S (2006) Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. Neuroimage 29:493–504

    Article  PubMed  Google Scholar 

  15. Boujraf S, Luypaert R, Shabana W, De Meirleir L, Sourbron S, Osteaux M (2002) Study of pediatric brain development using magnetic resonance imaging of anisotropic diffusion. Magn Reson Imaging 20:327–336

    Article  PubMed  Google Scholar 

  16. Evans AC; Brain Development Cooperative Group (2006) The NIH MRI study of normal brain development. Neuroimage 30:184–202

    Article  PubMed  Google Scholar 

  17. Filippi CG, Lin DD, Tsiouris AJ, Watts R, Packard AM, Heier LA, Uluğ AM (2003) Diffusion-tensor MR imaging in children with developmental delay: preliminary findings. Radiology 229:44–50

    Article  PubMed  Google Scholar 

  18. Yamada I, Himeno Y, Nagaoka T, et al. (1999) Moyamoya disease: evaluation with diffusion-weighted and perfusion echo-planar MR imaging. Radiology 212:340–347

    PubMed  CAS  Google Scholar 

  19. Moran CJ, Siegel MJ, DeBaun MR (1998) Sickle cell disease: imaging of cerebrovascular complications. Radiology 206:311–321

    PubMed  CAS  Google Scholar 

  20. Moritani T, Numaguchi Y, Lerner NB, et al. (2004) Sickle Cell Cerebrovascular Disease: usual and unusual findings on MR Imaging and MR Angiography, Clin Imaging 28:173–86

    Article  PubMed  Google Scholar 

  21. Porto L, Kieslich M, Yan B, Zanella FE, Lanfermann H. (2006) Accelerated myelination associated with venous congestion. Eur Radiol 16:922–926

    Article  PubMed  CAS  Google Scholar 

  22. Barkovich JA (2005) Pediatric Neuroimaging, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp. 875–884

    Google Scholar 

  23. Phillips MD, Zimmerman RA (1999) Diffusion imaging in pediatric hypoxic ischemia injury. Neuroimaging Clin N Am 9:41–52

    PubMed  CAS  Google Scholar 

  24. Robertson RL, Ben-Sira L, Barnes PD, et al. (1999) MR line-scan diffusion-weighted imaging of term neonates with perinatal brain ischemia. AJNR Am J Neuroradiol 20:1658–1670

    PubMed  CAS  Google Scholar 

  25. Johnson AJ, Lee BC, Lin W (1999) Echoplanar diffusion-weighted imaging in neonates and infants with suspected hypoxic-ischemic injury: correlation with patient outcome. AJR Am J Roentgenol 172:219–226

    PubMed  CAS  Google Scholar 

  26. Inder T, Huppi PS, Zientara GP, et al. (1999) Early detection of periventricular leukomalacia by diffusion-weighted magnetic resonance imaging techniques. J Pediatr 134:631–634

    Article  PubMed  CAS  Google Scholar 

  27. Forbes KP, Pipe JG, Bird R (2000) Neonatal hypoxic-ischemic encephalopathy: detection with diffusion-weighted MR imaging. AJNR Am J Neuroradiol 21:1490–6

    PubMed  CAS  Google Scholar 

  28. Wolf RL, Zimmerman RA, Clancy R, Haselgrove JH (2001) Quantitative apparent diffusion coefficient measurements in term neonates for early detection of hypoxic-ischemic brain injury: initial experience. Radiology 218:825–33

    PubMed  CAS  Google Scholar 

  29. Moritani T, Smoker WR, Sato Y, Numaguchi Y, Westesson PL (2005) Diffusion-weighted imaging of acute excitotoxic brain injury. AJNR Am J Neuroradiol 26:216–228

    PubMed  Google Scholar 

  30. Rumpel H, Nedelcu J, Aguzzi A, et al. (1997) Late glial swelling after acute cerebral hypoxic-ischemia in the neonatal rat: a combined magnetic resonance and histochemical study. Pediatr Res 42:54–59

    Article  PubMed  CAS  Google Scholar 

  31. Malik GK, Trivedi R, Gupta RK, Hasan KM, Hasan M, Gupta A, Pandey CM, Narayana PA (2006) Serial quantitative diffusion tensor MRI of the term neonates with hypoxic-ischemic encephalopathy (HIE). Neuropediatrics 37:337–343

    Article  PubMed  CAS  Google Scholar 

  32. Chen CY, Zimmerman RA, Rorke LB (1999) Neoroimaging inchildabuse:amechanism-basedapproach. Neuroradiology 41:711–722

    Article  PubMed  CAS  Google Scholar 

  33. Bullock R, Butcher SP, Chen MH, et al. (1991) Correlation of the extracellular glutamate concentration with extent of blood flow reduction after subdural hematoma in the rat. J Neurosurg 74:794–802

    Article  PubMed  CAS  Google Scholar 

  34. Johnson DL, Boal D, Baule R. (1995) Role of apnea in non-accidental head injury. Pediatr Neurosurg 23:305–310

    Article  PubMed  CAS  Google Scholar 

  35. Geddes JF, Hackshaw AK, Vowles GH, et al. (2001) Neuropathology of inflicted head injury in children. Patterns of brain damage. Brain 124:1290–1298

    CAS  Google Scholar 

  36. Suh DY, Davis PC, Hopkins KL, et al. (2001) Nonaccidental pediatric head injury: diffusion-weighted imaging findings. Neurosurgery 49:309–320

    Article  PubMed  CAS  Google Scholar 

  37. Holshouser BA, Ashwal S, Luh G, et al. (1997) Proton MR spectroscopy after central nervous system injury: outcome prediction in neonates, infants, and children. Radiology 202:487–496

    PubMed  CAS  Google Scholar 

  38. Duhaime AC, Gennarelli LM, Boardman C (1996) Neuroprotection by dextromethorphan in acute experimental subdural hematoma in the rat. J Neurotrauma 13:79–84

    Article  PubMed  CAS  Google Scholar 

  39. Ikonomidou C, Qin Y, Labruyere J, Kirby C, et al. (1996) Prevention of trauma-induced neurodegeneration in infant rat brain. Pediatr Reseach 39:1020–1027

    Article  CAS  Google Scholar 

  40. Smith SL, Hall ED (1998) Tirilazad widens the therapeutic window for riluzole-induced attenuation of progressive cortical degeneration in an infant rat model of the shaken baby syndrome. J Neurotrauma 15:707–719

    Article  PubMed  CAS  Google Scholar 

  41. Barzo P, Marmarou A, Fatouros P, et al. (1997) Contribution of vasogenic and cellular edema to traumatic brain swelling measured by diffusion-weighted imaging. J Neurosurg 87:900–907

    Article  PubMed  CAS  Google Scholar 

  42. Liu AY, Maldjian JA, Bagley LJ, Sinson GP, et al. (1999) Traumatic brain injury: diffusion-weighted MR imaging findings. AJNR Am J Neuroradiol 20:1636–1641

    PubMed  CAS  Google Scholar 

  43. Tsuchiya K, Katase S, Yoshino A, et al. (1999) Diffusion-weighted MR imaging of encephalitis. AJR Am J Roentgenol 173:1097–1099

    PubMed  CAS  Google Scholar 

  44. Ebisu T, Tanaka C, Umeda M, et al. (1996) Discrimination of brain abscess from necrotic or cystic tumors by diffusion-weighted echo planar imaging. Magn Reson Imaging 14:1113–1116

    Article  PubMed  CAS  Google Scholar 

  45. Huang CC, Chen CY, Yang HB, Wang SM, Chang YC, Liu CC (1998) Central nervous system candidiasis in very lowbirth-weight premature neonates and infants: US characteristics and histopathologic and MR imaging correlates in five patients. Radiology 209:49–56

    PubMed  CAS  Google Scholar 

  46. Kotsenas AL, Roth TC, Manness WK, et al. (1999) Abnormal diffusion-weighted MRI in medulloblastoma: does it reflect small cell histology? Pediatr Radiol 29:524–526

    Article  PubMed  CAS  Google Scholar 

  47. Wilke M, Eidenschink A, Muller-Weihrich S, Auer DP (2001) MR diffusion imaging and 1H spectroscopy in a child with medulloblastoma. A case report. Acta Radiol 42:39–42

    PubMed  CAS  Google Scholar 

  48. Erdem E, Zimmerman RA, Haselgrove JC, Bilaniuk LT, Hunter JV (2001) Diffusion-weighted imaging and fluid attenuated inversion recovery imaging in the evaluation of primitive neuroectodermal tumors. Neuroradiology 43:927–933

    Article  PubMed  CAS  Google Scholar 

  49. Klisch J, Husstedt H, Hennings S, von Velthoven V, Pagenstecher A, Schumacher M (2000) Supratentorial primitive neuroectodermal tumours: diffusion-weighted MRI. Neuroradiology 42:393–398

    Article  PubMed  CAS  Google Scholar 

  50. Tien RD, Felsberg GJ, Friedman H, et al. (1993) MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequence. AJR Am J Roentgenol 162:671–677

    Google Scholar 

  51. Guo AC, Cummings TJ, Dash RC, Provenzale JM (2002) Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology 224:177–183

    Article  PubMed  Google Scholar 

  52. Koral K, Gargan L, Bowers DC, Gimi B, Timmons CF, Weprin B, Rollins NK (2008) Imaging characteristics of atypical teratoid-rhabdoid tumor in children compared with medulloblastoma. AJR Am J Roentgenol 190:809–814

    Article  PubMed  Google Scholar 

  53. Kan P, Liu JK, Hedlund G, Brockmeyer DL, Walker ML, Kestle JR (2006) The role of diffusion-weighted magnetic resonance imaging in pediatric brain tumors. Childs Nerv Syst 22:1435–1439

    Article  PubMed  Google Scholar 

  54. Rumboldt Z, Camacho DL, Lake D, Welsh CT, Castillo M (2006) Apparent diffusion coefficients for differentiation of cerebellar tumors in children. AJNR Am J Neuroradiol 27:1362–1369

    PubMed  CAS  Google Scholar 

  55. Meyers SP, Khademian ZP, Biegel JA, Chuang SH, Korones DN, Zimmerman RA (2006) Primary intracranial atypical teratoid/rhabdoid tumors of infancy and childhood: MRI features and patient outcomes. AJNR Am J Neuroradiol 27:962–971

    PubMed  CAS  Google Scholar 

  56. Meyers SP, Khademian ZP, Chuang SH, Pollack IF, Korones DN, Zimmerman RA (2004) Choroid plexus carcinomas in children: MRI features and patient outcomes. Neuroradiology 46:770–780

    Article  PubMed  Google Scholar 

  57. Cooney MJ, Bradly WG, Symko SC, et al. (2000) Hypertensive encephalopathy: complication in children treated for myeloproliferative disorders: report of three cases. Radiology 214:711–716

    PubMed  CAS  Google Scholar 

  58. Schwartz RB, Mulkern RV, Gudbjartsson H, et al. (1998) Diffusion-weighted MR imaging in hypertensive encephalopathy: clues to pathogenesis. AJNR Am J Neuroradiol 19:859–862

    PubMed  CAS  Google Scholar 

  59. Yagishita A, Nakano I, Ushioda T, Otsuki N, Hasegawa A (1995) Acute encephalopathy with bilateral thalamoteg-mental involvement in infants and children: imaging and pathology findings. AJNR Am J Neuroradiol 16:439–447

    PubMed  CAS  Google Scholar 

  60. Albayram S, Bilgi Z, Selcuk H, Selcuk D, Cam H, Koçer N, Islak C (2004) Diffusion-weighted MR imaging findings of acute necrotizing encephalopathy. AJNR Am J Neuroradiol 25:792–797

    PubMed  Google Scholar 

  61. Maeda M, Tsukahara H, Terada H, Nakaji S, Nakamura H, Oba H, Igarashi O, Arasaki K, Machida T, Takeda K, Takanashi JI. (2006) Reversible splenial lesion with restricted diffusion in a wide spectrum of diseases and conditions. J Neuroradiol 33:229–236

    Article  PubMed  CAS  Google Scholar 

  62. Takanashi J, Barkovich AJ, Shiihara T, Tada H, Kawatani M, Tsukahara H, Kikuchi M, Maeda M. (2006) Widening spectrum of a reversible splenial lesion with transiently reduced diffusion. AJNR Am J Neuroradiol 27:836–838

    PubMed  CAS  Google Scholar 

  63. Tada H, Takanashi J, Barkovich AJ, Oba H, Maeda M, Tsukahara H, Suzuki M, Yamamoto T, Shimono T, Ichiyama T, Taoka T, Sohma O, Yoshikawa H, Kohno Y (2004) Clinically mild encephalitis/encephalopathy with a reversible splenial lesion. Neurology 63:1854–1858

    PubMed  CAS  Google Scholar 

  64. Bulakbasi N, Kocaoglu M, Tayfun C, Ucoz T. (2006) Transient splenial lesion of the corpus callosum in clinically mild influenza-associated encephalitis/encephalopathy. AJNR Am J Neuroradiol 27: 1983-6http://www.ncbi.nlm.nih.gov/pubmed/ 17032879?ordinalpos=9&itool=EntrezSystem2.PEntrez. Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum

    Google Scholar 

  65. Kim JH, Choi JY, Koh SB, Lee Y (2007) Reversible splenial abnormality inhypoglycemic encephalopathy. Neuroradiology 49:217–222

    Article  PubMed  Google Scholar 

  66. Doherty MJ, Jayadev S, Watson NF, Konchada RS, Hallam DK (2005) Clinical implications of splenium magnetic resonance imaging signal changes. Arch Neurol 62:433–437

    Article  PubMed  Google Scholar 

  67. Conti M, Salis A, Urigo C, Canalis L, Frau S, Canalis GC (2007) Transient focal lesion in the splenium of the corpus callosum: MR imaging with an attempt to clinical-physiopathological explanation and review of the literature. Radiol Med (Torino) 112:921–935

    Article  CAS  Google Scholar 

  68. da Rocha AJ, Reis F, Gama HP, da Silva CJ, Braga FT, Maia AC Jr, Cendes F (2006) Focal transient lesion in the splenium of the corpus callosum in three non-epileptic patients. Neuroradiology 48:731–735

    Article  PubMed  Google Scholar 

  69. Cecil KM, Halsted MJ, Schapiro M, Dinopoulos A, Jones BV. (2002) Reversible MR imaging and MR spectroscopy abnormalities in association with metronidazole therapy. J Comput Assist Tomogr 26:948–951

    Article  PubMed  Google Scholar 

  70. Appenzeller S, Faria A, Marini R, Costallat LT, Cendes F. (2006) Focal transient lesions of the corpus callosum in systemic lupus erythematosus. Clin Rheumatol 25:568–571

    Article  PubMed  Google Scholar 

  71. Mikaeloff Y, Adamsbaum C, Husson B, Vallée L, Ponsot G, Confavreux C, Tardieu M, Suissa S; KIDMUS Study Group on Radiology (2004) MRI prognostic factors for relapse after acute CNS inflammatory demyelination in childhood. Brain 127(Pt 9):1942–1947

    Article  PubMed  Google Scholar 

  72. Dale RC, de Sousa C, Chong WK, Cox TC, Harding B, Neville BG (2000) Acute disseminated encephalomyelitis, multiphasic disseminated encephalomyelitis and multiple sclerosis in children. Brain 123 Pt 12:2407–2

    Article  PubMed  Google Scholar 

  73. Balasubramanya KS, Kovoor JM, Jayakumar PN, Ravishankar S, Kamble RB, Panicker J, Nagaraja D (2007) Diffusion-weighted imaging and proton MR spectroscopy in the characterization of acute disseminated encephalomyelitis. Neuroradiology 49(2):177–83

    Article  PubMed  CAS  Google Scholar 

  74. Barkovich JA (2005) Pediatric Neuroimaging, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp. 110–112

    Google Scholar 

  75. Rovira A, Pericot I, Alonso J, Rio J, et al. (2002) Serial diffusion-weighted MR imaging and proton MR spectroscopy of acute large demyelinating brain lesions: case report. AJNR Am J Neuroradiol Jun-Jul; 23:989–994

    Google Scholar 

  76. Cramer SC, Stegbauer KC, Schneider A, et al. (2001) Decreased diffusion in central pontine myelinolysis. AJNR Am J Neuroradiol Sep; 22:1476–1479

    CAS  Google Scholar 

  77. Ono J, Harada K, Mano T, et al. (1997) Differentiation of dys-and demyelination using diffusion anisotropy. Pediatr Neurol 16:63–66

    Article  PubMed  CAS  Google Scholar 

  78. Sener RN (2002) Metachromatic leukodystrophy: diffusion MR imaging findings. AJNR Am J Neuroradiol 23:1424–1426

    PubMed  Google Scholar 

  79. Patay Z (2005) Diffusion-weighted MR imaging in leukod-ystrophies. Eur Radiol 15:2284–2303

    Article  PubMed  Google Scholar 

  80. Guo AC, Petrella JR, Kurtzberg J, Provenzale JM (2001) Evaluation of white matter anisotropy in Krabbe disease with diffusion tensor MR imaging: initial experience. Radiology 218:809–815

    PubMed  CAS  Google Scholar 

  81. Suzuki K, Suzuki K (2002) Lysosomal diseases. In Graham DI, Lantos PL (eds) Greenfields neuropathology, 7th edn. Arnold, London, New York, New Delhi, pp. 684–685

    Google Scholar 

  82. Barkovich JA (2005) Pediatric Neuroimaging, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp. 160–161

    Google Scholar 

  83. Eichler FS, Itoh R, Barker PB, et al. (2002) Proton MR spec-troscopic and diffusion tensor brain MR imaging in X-linked adrenoleukodystrophy; initial experience. Radiology 225:245–252

    Article  PubMed  Google Scholar 

  84. Powers JM, De Vino DC (2002) Peroxisomal and mitochondrial disorders. In Graham DI, Landos PL (eds) Greenfields neuropathology, 7th edn. Arnold, London, New York, New Delhi, pp. 758–765

    Google Scholar 

  85. Ellison D, Love S (1998) Toxic injury of the CNS. In: Neuropathology, 1st edn. London: Mosby 25:5

    Google Scholar 

  86. Lerman-Sagie T, Leshinsky-Silver E, Watemberg N, Luckman Y, Lev D (2005) White matter involvement in mitochondrial diseases. Mol Genet Metab 93:179–189

    Google Scholar 

  87. Yonemura K, Hasegawa Y, Kimura K, Minematsu K, Yamaguchi T (2001) Diffusion-weighted MR imaging in a case of mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. AJNR Am J Neuroradiol 22:269–272

    PubMed  CAS  Google Scholar 

  88. Yoneda M, Maeda M, Kimura H, Fujii A, Katayama K, Kuriyama M (1999) Vasogenic edema on MELAS: a serial study with diffusion-weighted MR imaging. Neurology 53:2182–2184

    PubMed  CAS  Google Scholar 

  89. Oppenheim C, Galanaud D, Samson Y, Sahel M, Dormont D, Wechsler B, Marsault C (2000) Can diffusion weighted magnetic resonance imaging help differentiate stroke from stroke-like events in MELAS? J NeurolNeurosurg Psychiatry 69:248–250

    Article  CAS  Google Scholar 

  90. Ito H, Mori K, Harada M, Minato M, Naito E, Takeuchi M, Kuroda Y, Kagami S (2008) Serial brain imaging analysis of stroke-like episodes in MELAS. Brain Dev 30:483–488

    Article  PubMed  Google Scholar 

  91. Wang XY, Noguchi K, Takashima S, Hayashi N, Ogawa S, Seto H (2003) Serial diffusion-weighted imaging in a patient with MELAS and presumed cytotoxic oedema. Neuroradiology 45:640–643

    Article  PubMed  CAS  Google Scholar 

  92. Sakai Y, Kira R, Torisu H, Ihara K, Yoshiura T, Hara T (2006) Persistent diffusion abnormalities in the brain stem of three children with mitochondrial diseases. AJNR Am J Neuroradiol 27:1924–1926

    PubMed  CAS  Google Scholar 

  93. Sacher M, Fatterpekar GM, Edelstein S, Sansaricq C, Naidich TP (2005) MRI findings in an atypical case of Kearns-Sayre syndrome: a case report. Neuroradiology 47:241–244

    Article  PubMed  Google Scholar 

  94. Kono K, Okano Y, Nakayama K, Hase Y, Minamikawa S, Ozawa N, Yokote H, Inoue Y (2005) Diffusion-weighted MR imaging in patients with phenylketonuria: relationship between serum phenylalanine levels and ADC values in cerebral white matter. Radiology 236:630–636

    Article  PubMed  Google Scholar 

  95. Sakai M, Inoue Y, Oba H, Ishiguro A, Sekiguchi K, Tsukune Y, Mitomo M, Nakamura H (2005) Age dependence of diffusion-weighted magnetic resonance imaging findings in maple syrup urine disease encephalopathy. J Comput Assist Tomogr 29:524–527

    Article  PubMed  Google Scholar 

  96. Srikanth SG, Chandrashekar HS, Nagarajan K, Jayakumar PN (2007) Restricted diffusion in Canavan disease. Childs Nerv Syst 23:465–468

    Article  PubMed  CAS  Google Scholar 

  97. Sener RN (2003) Canavan disease: diffusion magnetic resonance imaging findings. J Comput Assist Tomogr 27:30–33

    Article  PubMed  Google Scholar 

  98. Janson CG, McPhee SW, Francis J, Shera D, Assadi M, Freese A, Hurh P, Haselgrove J, Wang DJ, Bilaniuk L, Leone P (2006) Natural history of Canavan disease revealed by proton magnetic resonance spectroscopy (1H-MRS) and diffusion-weighted MRI. Neuropediatrics 37:209–221

    Article  PubMed  CAS  Google Scholar 

  99. Sener RN (2003) L-2 hydroxyglutaric aciduria: proton magnetic resonance spectroscopy and diffusion magnetic resonance imaging findings. J Comput Assist Tomogr 27:38–43

    Article  PubMed  Google Scholar 

  100. Sener RN (2005) Tyrosinemia: computed tomography, magnetic resonance imaging, diffusion magnetic resonance imaging, and proton spectroscopy findings in the brain. J Comput Assist Tomogr 29:323–325

    Article  PubMed  Google Scholar 

  101. Sener RN (2004) Diffusion magnetic resonance imaging patterns in metabolic and toxic brain disorders. Acta Radiol 45:561–570

    Article  PubMed  CAS  Google Scholar 

  102. Au WL, Lim TC, Seow DC, Koh PL, Loh NK, Lim MS, Tan IK, Yee WC (2003) Serial diffusion-weighted magnetic resonance imaging in adult-onset citrullinaemia. J Neurol Sci 209:101–104

    Article  PubMed  Google Scholar 

  103. Takanashi J, Barkovich AJ, Cheng SF, Kostiner D, Baker JC, Packman S (2003) Brain MR imaging in acute hyperammonemic encephalopathy arising from late-onset ornithine transcarbamylase deficiency. AJNR Am J Neuroradiol 24:390–393

    PubMed  Google Scholar 

  104. Sener RN (2003) Diffusion magnetic resonance imaging in infantile neuroaxonal dystrophy. J Comput Assis Tomogr 27:34–37

    Article  Google Scholar 

  105. Barkovich JA (2005) Pediatric Neuroimaging, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp. 131–134

    Google Scholar 

  106. Ono J, Harada K, Sakurai K, et al. (1994) MR diffusion imaging in Pelizaeus-Merzbacher disease. Brain Dev 16:219–223

    Article  PubMed  CAS  Google Scholar 

  107. Kennedy C, Grave GD, Jehle JW, Sokoloff L (1970) Blood flow to white matter during maturation of the brain. Neurology 20:613–618

    PubMed  CAS  Google Scholar 

  108. Moritani T, Kim J, Sato Y, Bonthius D, Smoker WR (2008) Abnormal hypermyelination in a neonate with Sturge-Weber syndrome demonstrated on diffusion-tensor imaging. J Magn Reson Imaging 27:617–620

    Article  PubMed  Google Scholar 

  109. Yagishita A, Arai N, Tamagawa K, Oda M (1998) Hemimegalencephaly: signal changes suggesting abnormal myelination on MRI. Neuroradiology 40:734–738

    Article  PubMed  CAS  Google Scholar 

  110. Agid R, Lieberman S, Nadjari M, Gomori JM (2006) Prenatal MR diffusion-weighted imaging in a fetus with hemimegalencephaly. Pediatr Radiol 36:138–140

    Article  PubMed  Google Scholar 

  111. Salamon N, Andres M, Chute DJ, Nguyen ST, Chang JW, Huynh MN, Chandra PS, Andre VM, Cepeda C, Levine MS, Leite JP, Neder L, Vinters HV, Mathern GW (2006) Contralateral hemimicrencephaly and clinical-pathological correlations in children with hemimegalencephaly. Brain 129(Pt 2):352–365

    Article  PubMed  Google Scholar 

  112. Sato N, Ota M, Yagishita A, Miki Y, Takahashi T, Adachi Y, Nakata Y, Sugai K, Sasaki M (2008) Aberrant midsagittal fiber tracts in patients with hemimegalencephaly. AJNR Am J Neuroradiol 29:823–827

    Article  PubMed  CAS  Google Scholar 

  113. Trivedi R, Gupta RK, Hasan KM, Hou P, Prasad KN, Narayana PA (2006) Diffusion tensor imaging in polymicrogyria: a report of three cases. Neuroradiology 48:422–427

    Article  PubMed  CAS  Google Scholar 

  114. Lee SK, Kim DI, Kim J, Kim DJ, Kim HD, Kim DS, Mori S (2005) Diffusion-tensor MR imaging and fiber tractography: a new method of describing aberrant fiber connections in developmental CNS anomalies. Radiographics 25:53–65

    Article  PubMed  Google Scholar 

  115. Rollins NK (2007) Clinical applications of diffusion tensor imaging and tractography in children. Pediatr Radiol 37:769–780

    Article  PubMed  Google Scholar 

  116. Jansen FE, Braun KP, van Nieuwenhuizen O, Huiskamp G, Vincken KL, van Huffeien AC, van der Grond J (2003) Diffusion-weighted magnetic resonance imaging and identification of the epileptogenic tuber in patients with tuberous sclerosis. Arch Neurol 60:1580–1584

    Article  PubMed  Google Scholar 

  117. Makki MI, Chugani DC, Janisse J, Chugani HT (2007) Characteristics of abnormal diffusivity in normal-appearing white matter investigated with diffusion tensor MR imaging in tuberous sclerosis complex. AJNR Am J Neuroradiol 28:1662–1667

    Article  PubMed  CAS  Google Scholar 

  118. Utsunomiya H, Yamashita S, Takano K, Okazaki M (2006) Arrangement of fiber tracts forming Probst bundle in complete callosal agenesis: report of two cases with an evaluation by diffusion tensor tractography. Acta Radiol 47:1063–1066

    Article  PubMed  CAS  Google Scholar 

  119. Moritani T, Shrier DA, Numaguchi Y, et al. (2000) Diffusion-weighted echo-planar MR imaging: clinical applications and pitfalls — a pictorial essay. Clin Imaging 24:181–192

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Pediatrics. In: Diffusion-Weighted MR Imaging of the Brain. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78785-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78785-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78784-6

  • Online ISBN: 978-3-540-78785-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics