Randomized Rendez-Vous with Limited Memory

  • Evangelos Kranakis
  • Danny Krizanc
  • Pat Morin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4957)

Abstract

We present a tradeoff between the expected time for two identical agents to rendez-vous on a synchronous, anonymous, oriented ring and the memory requirements of the agents. In particular, we show that there exists a 2t state agent, which can achieve rendez-vous on an n node ring in expected time O( n 2/2 t  + 2 t ) and that any t/2 state agent requires expected time Ω( n 2/2 t ). As a corollary we observe that Θ(loglogn) bits of memory are necessary and sufficient to achieve rendez-vous in linear time.

Keywords

Mobile Agent Edge Label Simple Random Walk Random Coin Start Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpern, S.: The rendezvous search problem. SIAM Journal of Control and Optimization 33, 673–683 (1995)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer Academic Publishers, Norwell, Massachusetts (2003)MATHGoogle Scholar
  3. 3.
    Coppersmith, D., Tetali, P., Winkler, P.: Collisions among random walks on a graph. SIAM Journal of Discrete Mathematics 6, 363–374 (1993)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dessmark, A., Fraigniaud, P., Pelc, A.: Deterministic rendezvous in graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 184–195. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents rendezvous in a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Flocchini, P., Kranakis, E., Krizanc, D., Luccio, F., Santoro, N., Sawchuk, C.: Mobile agent rendezvous when tokens fail. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 161–172. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple mobile agent rendezvous in the ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 599–608. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Gasieniec, L., Kranakis, E., Krizanc, D., Zhang, X.: Optimal memory rendezvous of anonymous mobile agents in a uni-directional ring. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 282–292. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Kowalski, D., Malinowski, A.: How to meet in an anonymous network. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 44–58. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Kowalski, D., Pelc, A.: Polynomial deterministic rendezvous in arbitrary graphs. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 644–656. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Kranakis, E., Krizanc, D.: An algorithmic theory of mobile agents. In: Symposium on Trustworthy Global Computing (2006)Google Scholar
  12. 12.
    Kranakis, E., Krizanc, D., Markou, E.: Mobile agent rendezvous in a synchronous torus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 653–664. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Kranakis, E., Krizanc, D., Rajasbaum, S.: Mobile agent rendezvous: A survey. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous search problem in the ring. In: Proc. International Conference on Distributed Computing Systems (ICDCS), pp. 592–599 (2003)Google Scholar
  15. 15.
    De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vacaro, U.: Asynchronous deterministic rendezvous in graphs. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 271–282. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)MATHGoogle Scholar
  17. 17.
    Ross, S.M.: Probability Models for Computer Science. Harcourt Academic Press, London (2002)Google Scholar
  18. 18.
    Roy, N., Dudek, G.: Collaborative robot exploration and rendezvous: Algorithms, performance bounds and observations. Autonomous Robots 11, 117–136 (2001)MATHCrossRefGoogle Scholar
  19. 19.
    Santoro, N.: Design and Analysis of Distributed Algorithms. Wiley, Hoboken (2006)Google Scholar
  20. 20.
    Sawchuk, C.: Mobile Agent Rendezvous in the Ring. PhD thesis, Carleton University, School of Computer Science, Ottawa, Canada (2004)Google Scholar
  21. 21.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM Journal of Computing 28, 1347–1363 (1999)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Yu, X., Yung, M.: Agent rendezvous: A dynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Evangelos Kranakis
    • 1
  • Danny Krizanc
    • 2
  • Pat Morin
    • 1
  1. 1.School of Computer ScienceCarleton University 
  2. 2.Department of Mathematics and Computer ScienceWesleyan University 

Personalised recommendations