A Memetic Algorithm for the Team Orienteering Problem

  • Hermann Bouly
  • Duc-Cuong Dang
  • Aziz Moukrim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4974)


The Team Orienteering Problem (TOP) is a generalization of the Orienteering Problem (OP). A limited number of vehicles is available to visit customers from a potential set. Each vehicle has a predefined running-time limit, and each customer has a fixed associated profit. The aim of the TOP is to maximize the total collected profit. In this paper we propose a simple hybrid Genetic Algorithm (GA) using new algorithms dedicated to the specific scope of the TOP: an Optimal Split procedure for chromosome evaluation and Local Search techniques for mutation. We have called this hybrid method a Memetic Algorithm (MA) for the TOP. Computational experiments conducted on standard benchmark instances clearly show our method to be highly competitive with existing ones, yielding new improved solutions in at least 11 instances.


Travel Cost Memetic Algorithm Variable Neighborhood Search Orienteering Problem Local Search Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Archetti, C., Hertz, A., Speranza, M.G.: Metaheuristics for the team orienteering problem. Journal of Heuristics 13(1), 49–76 (2006)CrossRefGoogle Scholar
  2. 2.
    Beasley, J.E.: Route-first cluster-second methods for vehicle routing. Omega 11, 403–408 (1983)CrossRefGoogle Scholar
  3. 3.
    Boussier, S., Feillet, D., Gendreau, M.: An exact algorithm for the team orienteering problems. 4OR 5, 211–230 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Butt, S., Cavalier, T.: A heuristic for the multiple tour maximum collection problem. Computers & Operations Research 21, 101–111 (1994)zbMATHCrossRefGoogle Scholar
  5. 5.
    Chao, I.-M., Golden, B., Wasil, E.A.: The team orienteering problem. European Journal of Operational Research 88, 464–474 (1996)zbMATHCrossRefGoogle Scholar
  6. 6.
    Feillet, D., Dejax, P., Gendreau, M.: Traveling salesman problems with profits. Transportation Science 39(2), 188–205 (2005)CrossRefGoogle Scholar
  7. 7.
    Khemakhem, M., Chabchoub, H., Semet, F.: Heuristique basée sur la mémoire adaptative pour le problème de tournées de véhicules sélectives. In: Logistique & Transport, Sousse, Tunisie, pp. 31–37 (November 2007)Google Scholar
  8. 8.
    Moscato, P.: New Ideas in Optimization, chapter Memetic Algorithms: a short introduction, pp. 219–234 (1999)Google Scholar
  9. 9.
    Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem. Computer & Operations Research 31(12), 1985–2002 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. EJOR 177, 2033–2049 (2007)zbMATHCrossRefGoogle Scholar
  11. 11.
    Solomon, M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research 35, 254–265 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Tang, H., Miller-Hooks, E.: A tabu search heuristic for the team orienteering problem. Computer & Operations Research 32, 1379–1407 (2005)CrossRefGoogle Scholar
  13. 13.
    Ulusoy, G.: The fleet size and mixed problem for capacitated arc routing. European Journal of Operational Research 22, 329–337 (1985)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hermann Bouly
    • 1
    • 2
  • Duc-Cuong Dang
    • 1
  • Aziz Moukrim
    • 1
  1. 1.Heudiasyc, CNRS UMR 6599Université de Technologie de CompiègneCompiègneFrance
  2. 2.VEOLIA EnvironnementDirection de la RechercheParisFrance

Personalised recommendations