Skip to main content

Enhancing Parameter Estimation of Biochemical Networks by Exponentially Scaled Search Steps

  • Conference paper
Book cover Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2008)

Abstract

A fundamental problem of modelling in Systems Biology is to precisely characterise quantitative parameters, which are hard to measure experimentally. For this reason, it is common practise to estimate these parameter values, using evolutionary and other techniques, by fitting the model behaviour to given data. In this contribution, we extensively investigate the influence of exponentially scaled search steps on the performance of two evolutionary and one deterministic technique; namely CMA-Evolution Strategy, Differential Evolution, and the Hooke-Jeeves algorithm, respectively. We find that in most test cases, exponential scaling of search steps significantly improves the search performance for all three methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies. Natural Computing 1, 3–52 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Fisher, W.G., Yang, P.C., Medikonduri, R.K., Jafri, M.S.: NFAT and NFκB activation in T lymphocytes: a model of differential activation of gene expression. Ann Biomed Eng 34(11), 1712–1728 (2006)

    Article  Google Scholar 

  3. Funahashi, A., Tanimura, N., M.M., Kitano, H.: CellDesigner: A process diagram editor for gene-regulatory and biochemical networks. BIOSILICO 1, 159–162 (2003)

    Google Scholar 

  4. Fung, E., Wong, W.W., Suen, J.K., Bulter, T., Lee, S., Liao, J.C.: A synthetic gene-metabolic oscillator. Nature 435(7038), 118–122 (2005)

    Article  Google Scholar 

  5. Hansen, N., Kern, S.: Evaluating the cma evolution strategy on multimodal test functions. In: Eighth International Conference on Parallel Problem Solving from Nature PPSN VIII, pp. 282–291. Springer, Heidelberg (2004)

    Google Scholar 

  6. Hansen, N., Muller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput 11(1), 1–18 (2003)

    Article  Google Scholar 

  7. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol Comput 9(2), 159–195 (2001)

    Article  Google Scholar 

  8. Hooke, R., Jeeves, T.A.: “ direct search” solution of numerical and statistical problems. J. ACM 8(2), 212–229 (1961)

    Article  MATH  Google Scholar 

  9. Hornberg, J.J., Bruggeman, F.J., Binder, B., Geest, C.R., de Vaate, A.J.M.B., Lankelma, J., Heinrich, R., Westerhoff, H.V.: Principles behind the multifarious control of signal transduction. ERK phosphorylation and kinase/phosphatase control 272(1), 244–258 (2005)

    Google Scholar 

  10. Huang, C.Y., Ferrell, J.E.J.: Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 93(19), 10078–10083 (1996)

    Article  Google Scholar 

  11. Hucka, M., Finney, A., Bornstein, B.J., Keating, S.M., Shapiro, B.E., Matthews, J., Kovitz, B.L., Schilstra, M.J., Funahashi, A., Doyle, J.C., Kitano, H.: Evolving a lingua franca and associated software infrastructure for computational systems biology: The systems biology markup language (SBML) project. Systems Biology 1(1), 41–53 (2004)

    Article  Google Scholar 

  12. Ibrahim, B., Diekmann, S., Schmitt, E., Dittrich, P.: In-silico model of the mitotic spindle assembly checkpoint. PLoS one (Under revision 2008)

    Google Scholar 

  13. Ibrahim, B., Schmitt, E., Dittrich, P., Diekmann, S.: MCC assembly is not combined with full Cdc20 sequestering (Submitted 2007)

    Google Scholar 

  14. Kaupe Jr., A.F.: Algorithm 178: Direct search. Commun. ACM 6(6), 313–314 (1963)

    Article  Google Scholar 

  15. Kitano, H.: Computational systems biology. Nature 420(14), 206–210 (2002)

    Article  Google Scholar 

  16. Kitano, H.: Systems biology: a brief overview. Science 295(5560), 1662–1664 (2002)

    Article  Google Scholar 

  17. Kofahl, B., Klipp, E.: Modelling the dynamics of the yeast pheromone pathway. Yeast 21(10), 831–850 (2004)

    Article  Google Scholar 

  18. Kongas, O., van Beek, J.H.G.M.: Creatine kinase in energy metabolic signaling in muscle. In: Proc. 2nd Int. Conf. Systems Biology (ICSB 2001), pp. 198–207 (2001)

    Google Scholar 

  19. Lenser, T., Hinze, T., Ibrahim, B., Dittrich, P.: Towards evolutionary network reconstruction tools for systems biology. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds.) EvoBIO 2007. LNCS, vol. 4447, Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Martins, S.I.F.S., Boekel, M.A.J.S.V.: Kinetic modelling of Amadori N-(1-deoxy-D-fructos-1-yl)-glycine degradation pathways. Part II–kinetic analysis. Carbohydr Res 338(16), 1665–1678 (2003)

    Article  Google Scholar 

  21. Marwan, W.: Theory of time-resolved somatic complementation and its use to explore the sporulation control network in Physarum polycephalum. Genetics 164(1), 105–115 (2003)

    Google Scholar 

  22. Mathworks: (Retrieved June 20, 2007) (2007), http://www.mathworks.com/

  23. Mendes group at VBI and Kummer group at EML research. COPASI: (Retrieved June 20, 2007) (2007), http://www.copasi.org/

  24. Nielsen, K., Sorensen, P.G., Hynne, F., Busse, H.G.: Sustained oscillations in glycolysis: An experimental and theoretical study of chaotic and complex periodic behavior and of quenching of simple oscillations. Biophys Chem 72(1–2), 49–62 (1998)

    Article  Google Scholar 

  25. Novre, N.L., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B.,, J.S.L., Hucka, M.: BioModels database: A free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Research 34 (2006)

    Google Scholar 

  26. Storn, R.: On the usage of differential evolution for function optimization. In: Biennial Conference of the North American Fuzzy Information Processing Society, NAFIPS, pp. 519–523 (1996)

    Google Scholar 

  27. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. of Global Optimization 11(4), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tyson, J.J.: Modeling the cell division cycle: cdc2 and cyclin interactions. Proc Natl Acad Sci USA 88(16), 7328–7332 (1991)

    Article  Google Scholar 

  29. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1, 80–83 (1945)

    Article  Google Scholar 

  30. Yildirim, N., Mackey, M.C.: Feedback regulation in the lactose operon: A mathematical modeling study and comparison with experimental data. Biophys J 84(5), 2841–2851 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elena Marchiori Jason H. Moore

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rohn, H., Ibrahim, B., Lenser, T., Hinze, T., Dittrich, P. (2008). Enhancing Parameter Estimation of Biochemical Networks by Exponentially Scaled Search Steps. In: Marchiori, E., Moore, J.H. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2008. Lecture Notes in Computer Science, vol 4973. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78757-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78757-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78756-3

  • Online ISBN: 978-3-540-78757-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics