Skip to main content

Part of the book series: Heat and Mass Transfer ((HMT))

  • 2438 Accesses

Abstract

The capillary flow with distinct evaporativemeniscus is described in the frame of the quasi-dimensional model. The effect of heat flux and capillary pressure oscillations on the stability of laminar flow at small and moderate Peclet number is estimated. It is shown that the stable stationary flow with fixed meniscus position occurs at low wall heat fluxes (Pe≪1), whereas at high wall heat fluxes Pe ≥ 1, the exponential increase of small disturbances takes place. The latter leads to the transition from stable stationary to an unstable regime of flow with oscillating meniscus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams TM, Abdel-Khalik SI, Jeter SM, Qureshi ZH (1998) An experimental investigation of single-phase forced convection in micro-channels. Int J Heat Mass Transfer 41:851–857

    Article  Google Scholar 

  • Bailey DK, Ameel TA, Warrington RO, Savoie TI (1995) Single-phase forced convection heat transfer in microgeometries: a review ASME. IECEC paper ES-396:301–310

    Google Scholar 

  • Bejan A (1993) Heat transfer. Wiley, New York

    Google Scholar 

  • Blake TD (1993) Dynamic contact angles and wetting kinetics. In: Berg JC (ed) Wettability. Dekker, New York, pp 251–309

    Google Scholar 

  • Bowers MB, Mudawar I (1994) High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks. Int J Heat Mass Transfer 37:321–332

    Article  Google Scholar 

  • Cox RG (1986) The dynamics of the spreading of liquids on a solid surface. Part 1: Viscous flows. J Fluid Mech 168:169–194

    Article  MATH  Google Scholar 

  • Dussan EBV (1979) On the spreading of liquids on solid surfaces: static and dynamic contact lines. Ann Rev Fluid Mech 11:371–400

    Article  Google Scholar 

  • Grigoriev VA, Zorin VM (eds) (1982) Heat mass transfer. Thermal experiment reference book. Energoizdat, Moscow (in Russian)

    Google Scholar 

  • Hetsroni G, Yarin LP, Pogrebnyak E (2004) Onset of flow instability in a heated capillary tube. Int J Multiphase Flow 30:1421–1449

    Article  MATH  Google Scholar 

  • Hoffman R (1975) A study of the advancing interface. I. Interface shape in liquid gas system. J Colloid Interface Sci 50:228–241

    Article  Google Scholar 

  • Incropera FP (1999) Liquid cooling of electronic devices by single-phase convection. Wiley, New York

    Google Scholar 

  • Khrustalev D, Faghri D (1996) Fluid flow effect in evaporation from liquid–vapor meniscus. J Heat Transfer 118:725–730

    Article  Google Scholar 

  • Kistler SF (1993) Hydrodynamics of wetting. In: Berg JC (ed) Wettability. Dekker, New York, pp 311–429

    Google Scholar 

  • Korn GA, Korn TM (1968) Mathematical handbook. McGraw-Hill, Boston

    Google Scholar 

  • Landau LD, Lifshitz EM (1959) Fluid mechanics, 2nd edn. Pergamon, London

    Google Scholar 

  • Morijama K, Inoue A (1992) The thermodynamic characteristics of two-phase flow in extremely narrow channels (the frictional pressure drop and heat transfer of boiling two-phase flow, analytical model). Heat Transfer Jpn Res 21:838–856

    Google Scholar 

  • Ngan CD, Dussan EBV (1982) On the nature of the dynamic contact angle: an experimental study. J Fluid Mech 118:27–40

    Article  Google Scholar 

  • Ory E, Yuan H, Prosperetti A (2000) Growth and collapse of vapor bubble in narrow tube. Phys Fluid 12:1268–1277

    Article  MATH  Google Scholar 

  • Peles YP, Yarin LP, Hetsroni G (1998) Heat transfer of two-phase flow in heated capillary. In: Heat Transfer 1998, Proceedings of the 11th International Heat Transfer Conference, Kyongju, Korea, 23–28 August 1998, vol 2, pp 193–198

    Google Scholar 

  • Peles YP, Yarin LP, Hetsroni G (2000) Thermodynamic characteristics of two-phase flow in a heated capillary. Int J Multiphase Flow 26:1063–1093

    Article  MATH  Google Scholar 

  • Peles YP, Yarin LP, Hetsroni G (2001) Steady and unsteady flow in a heated micro-channels. Int J Multiphase Flow 28:1589–1616

    Google Scholar 

  • Peng XF, Hu HY, Wang BX (1998) Boiling nucleation during liquid flow in micro-channels. Int J Heat Mass Transfer 41:191–196.3

    Article  Google Scholar 

  • Peng XF, Peterson GP (1996) Convective heat transfer and flow friction for water flow in micro-channel structure. Int J Heat Mass Transfer 39:2599–2608

    Article  Google Scholar 

  • Peng XF, Peterson GP (1995) The effect of thermofluid and geometrical parameters on convection of liquid through rectangular micro-channels. Int J Heat Mass Transfer 38:755–758

    Article  Google Scholar 

  • Peng XF, Peterson GP, Wang BX (1994) Heat transfer characteristics of water flowing through micro-channels. Exp Heat Transfer 7:249–264

    Google Scholar 

  • Peng XF, Tien Y, Lee DJ (2001) Bubble nucleation in micro-channels: statistical mechanics approach. Int J Multiphase Flow 44:2953–2964

    Google Scholar 

  • Peng XF, Wang BX (1993) Forced convection and flow boiling heat transfer for liquid flowing through micro-channels. Int J Heat Mass Transfer 14:3421–3427

    Article  Google Scholar 

  • Reid RC, Prausnitz JM, Poling BE (1987) The properties of gases and liquids. McGraw-Hill, Boston

    Google Scholar 

  • Sobhan CB, Garimella SV (2001) A comparative analysis of studies on heat transfer and fluid flow in micro-channels. Microscale Thermophys Eng 5:293–311

    Article  Google Scholar 

  • Tuckerman D (1984) Heat transfer microstructure for integrated circuits. Dissertation, Stanford University, Stanford

    Google Scholar 

  • Tuckerman D, Pease RFW (1981) High-performance heat sinking for VLSI. IEEE Electron Device Lett EDL-2:126–129

    Article  Google Scholar 

  • Vargaftic NB, Vinogradov YK, Yargin VS (1996) Handbook of physical properties of liquids and gases, pure substance and mixtures, 3rd augmented revised edn. Begel House, New York

    Google Scholar 

  • Wang BX, Peng XF (1994) Experimental investigation of liquid forced convection heat transfer through micro-channels. Int J Heat Mass Transfer 37:73–82

    Article  Google Scholar 

  • Wiesberg A, Bau HH, Zemel JN (1992) Analysis of micro-channels for integrated cooling. Int J Heat Mass Transfer 35:2465–2472

    Article  Google Scholar 

  • Wu PY, Little WA (1984) Measurement of the heat transfer characteristics of gas flow a fine channels heat exchangers used for microminiature refrigerators. Cryogenics 24:415–420

    Article  Google Scholar 

  • Yarin LP, Ekelchik LA, Hetsroni G (2002) Two-phase laminar flow in a heated micro-channels. Int J Multiphase Flow 28:1589–1616

    Article  MATH  Google Scholar 

  • Yuan H, Qguz HN, Prosperreti A (1999) Growth and collapse of a vapor bubble in a small tube. Int J Heat Mass Transfer 42:3643–3657

    Article  MATH  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Onset of Flow Instability in a Heated Capillary. In: Fluid Flow, Heat Transfer and Boiling in Micro-Channels. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78755-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78755-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78754-9

  • Online ISBN: 978-3-540-78755-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics