Skip to main content
  • 373 Accesses

Abstract

With the advent of microRNA (miRNA) we are compelled to revise our understanding of the mechanisms underlying gene regulation during health and disease. A miRNA is approximately 21 ribonucleotides long, genetically encoded, with a potential to recognize multiple mRNA targets guided by sequence complementarity and RNA-binding proteins. This class of molecules is functionally versatile, with the capacity to specifically inhibit translation initiation or elongation, as well as induce mRNA degradation, through predominantly targeting the 3′-untranslated regions of mRNA. Early on it was realized that the levels of individual miRNA varied under different developmental, biological, or pathological conditions, thus implicating these molecules in normal and pathological cellular attributes. In this chapter, we will discuss how the functions of miRNA relate to our existing knowledge on post-transcriptional regulation of gene expression that is the underlying mechanism of many diseases, including cardiac hypertrophy and failure, and their potential as biomarkers and therapeutic targets in diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdellatif M, Packer SE, Michael LH et al (1998) A Ras-dependent pathway regulates RNA polymerase II phosphorylation in cardiac myocytes: implications for cardiac hypertrophy. Mol Cell Biol 18:6729–6736

    PubMed  CAS  Google Scholar 

  • Bassell GJ, Powers CM, Taneja KL et al (1994) Single mRNAs visualized by ultrastructural in situ hybridization are principally localized at actin filament intersections in fibroblasts. J Cell Biol 126:863–876

    Article  PubMed  CAS  Google Scholar 

  • Bentwich I (2005) Prediction and validation of microRNAs and their targets. FEBS Lett 579:5904–5910

    Article  PubMed  CAS  Google Scholar 

  • Beyer A, Hollunder J, Nasheuer HP et al (2004) Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale. Mol Cell Proteomics 3:1083–1092

    Article  PubMed  CAS  Google Scholar 

  • Bloomston M, Frankel WL, Petrocca F et al (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297:1901–1908

    Article  PubMed  CAS  Google Scholar 

  • Blow MJ, Grocock RJ, van Dongen S et al (2006) RNA editing of human microRNAs. Genome Biol 7:4

    Article  Google Scholar 

  • Boehm M, Slack FJ (2006) MicroRNA control of lifespan and metabolism. Cell Cycle 5:837–840

    PubMed  CAS  Google Scholar 

  • Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101

    Article  PubMed  CAS  Google Scholar 

  • Brennecke J, Stark A, Russell RB et al (2005) Principles of microRNA-target recognition. PLoS Biol 3:0404–0418

    Article  CAS  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529

    Article  PubMed  CAS  Google Scholar 

  • Calin GA, Liu CG, Sevignani C et al (2004a) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101:11755–11760

    Article  PubMed  CAS  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD et al (2004b) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

    Article  PubMed  CAS  Google Scholar 

  • Care A, Catalucci D, Felicetti F et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618

    Article  PubMed  CAS  Google Scholar 

  • Chang S, McKinsey TA, Zhang CL et al (2004) Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24:8467–8476

    Article  PubMed  CAS  Google Scholar 

  • Chen CY, Croissant J, Majesky M et al (1996) Activation of the cardiac alpha-actin promoter depends upon serum response factor, Tinman homologue, Nkx-2.5, and intact serum response elements. Dev Genet 19:119–130

    Article  PubMed  CAS  Google Scholar 

  • Chen IY, Lypowy J, Pain J et al (2006) Histone H2A.z is essential for cardiac myocyte hypertrophy but opposed by silent information regulator 2alpha. J Biol Chem 281:19369–19377

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Ji R, Yue J et al (2007) MicroRNAs are aberrantly expressed in hypertrophic heart. Do they play a role in cardiac hypertrophy? Am J Pathol 170:1831–1840

    Article  PubMed  CAS  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949

    Article  PubMed  CAS  Google Scholar 

  • Cooperstock RL, Lipshitz HD (1997) Control of mRNA stability and translation during Drosophila development. Semin Cell Dev Biol 8:541–549

    Article  PubMed  CAS  Google Scholar 

  • Costinean S, Zanesi N, Pekarsky Y et al (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 103:7024–7029

    Article  PubMed  CAS  Google Scholar 

  • Dai YS, Markham BE (2001) p300 Functions as a coactivator of transcription factor GATA-4. J Biol Chem 276:37178–37185

    Article  PubMed  CAS  Google Scholar 

  • Dews M, Homayouni A, Yu D et al (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38:1060–1065

    Article  PubMed  CAS  Google Scholar 

  • Eis PS, Tam W, Sun L et al (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102:3627–3632

    Article  PubMed  CAS  Google Scholar 

  • Esquela-Kerscher A, Slack FJ (2006) Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  PubMed  CAS  Google Scholar 

  • Farh KK, Grimson A, Jan C et al (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310:1817–1821

    Article  PubMed  CAS  Google Scholar 

  • Formigli L, Ibba-Manneschi L, Perna AM et al (2003) Altered Cx43 expression during myocardial adaptation to acute and chronic volume overloading. Histol Histopathol 18:359–369

    PubMed  CAS  Google Scholar 

  • Frankel DS, Piette JD, Jessup M et al (2006) Validation of prognostic models among patients with advanced heart failure. J Card Fail 12:430–438

    Article  PubMed  Google Scholar 

  • Fulci V, Chiaretti S, Goldoni M et al (2007) Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood 109:4944–4951

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb E (1990) Messenger RNA transport and localization. Curr Opin Cell Biol 2:1080–1086

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S (2004) The microRNA Registry. Nucleic Acids Res 32:D109–D111

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S et al (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–144

    Article  PubMed  CAS  Google Scholar 

  • Gusterson RJ, Jazrawi E, Adcock IM et al (2003) The transcriptional co-activators CREB-binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity. J Biol Chem 278:6838–6847

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR et al (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed  CAS  Google Scholar 

  • Humphreys DT, Westman BJ, Martin DI et al (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA 102:16961–16966

    Article  PubMed  CAS  Google Scholar 

  • Ioannidis JP (2005) Microarrays and molecular research: noise discovery? Lancet 365:454–455

    PubMed  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Hiroe M, Hirata Y et al (1993) Insulin-like growth factor-I induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. Circulation 87:1715–1721

    PubMed  CAS  Google Scholar 

  • Iwata K, Sawa Y, Kitagawa-Sakakida S et al (2005) Gene transfection of hepatocyte growth factor attenuates the progression of cardiac remodeling in the hypertrophied heart. J Thorac Cardiovasc Surg 130:719–725

    Article  PubMed  CAS  Google Scholar 

  • Jegga AG, Chen J, Gowrisankar S et al (2007) GenomeTrafac: a whole genome resource for the detection of transcription factor binding site clusters associated with conventional and microRNA encoding genes conserved between mouse and human gene orthologs. Nucleic Acids Res 35:D116–D121

    Article  PubMed  CAS  Google Scholar 

  • Ji R, Cheng Y, Yue J et al (2007) MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 100:1579–1588

    Article  PubMed  CAS  Google Scholar 

  • John B, Enright AJ, Aravin A et al (2004) Human MicroRNA targets. PLoS Biol 2:1862–1879

    Article  CAS  Google Scholar 

  • Johnatty SE, Dyck JR, Michael LH et al (2000) Identification of genes regulated during mechanical load-induced cardiac hypertrophy. J Mol Cell Cardiol 32:805–815

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Zinshteyn B, Sethupathy P et al (2007) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315:1137–1140

    Article  PubMed  CAS  Google Scholar 

  • Killeen M, Coulombe B, Greenblatt J (1992) Recombinant TBP, transcription factor IIB, and RAP30 are sufficient for promoter recognition by mammalian RNA polymerase II. J Biol Chem 267:9463–9466

    PubMed  CAS  Google Scholar 

  • Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  PubMed  CAS  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    Article  PubMed  Google Scholar 

  • Kulshreshtha R, Ferracin M, Wojcik SE et al (2007) A microRNA signature of hypoxia. Mol Cell Biol 27:1859–1867

    Article  PubMed  CAS  Google Scholar 

  • Kutay H, Bai S, Datta J et al (2006) Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99:671–678

    Article  PubMed  CAS  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W et al (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  PubMed  CAS  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Yalcin A et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739

    Article  PubMed  CAS  Google Scholar 

  • Lau NC, Lim LP, Weinstein EG et al (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Jeon K, Lee JT et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    Article  PubMed  CAS  Google Scholar 

  • Lee EJ, Gusev Y, Jiang J et al (2006) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120:1046–1054

    Article  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  PubMed  CAS  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  PubMed  CAS  Google Scholar 

  • Linsley PS, Schelter J, Burchard J et al (2007) Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 27:2240–2252

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  PubMed  CAS  Google Scholar 

  • Luciano DJ, Mirsky H, Vendetti NJ et al (2004) RNA editing of a miRNA precursor. RNA 10:1174–1177

    Article  PubMed  CAS  Google Scholar 

  • Lypowy J, Chen IY, Abdellatif M (2005) An alliance between RAS GTPASE-activating protein, filamin C, and G3BP regulates myocyte growth. J Biol Chem 280:35717–25728

    Article  Google Scholar 

  • Maas S, Rich A (2000) Changing genetic information through RNA editing. Bioessays 22:790–802

    Article  PubMed  CAS  Google Scholar 

  • Macabasco-O’Connell A, Miller PS (2006) Biomarkers for heart failure. Prog Cardiovasc Nurs 21:215–218

    Article  PubMed  Google Scholar 

  • Michael MZ, SM OC, van Holst Pellekaan NG et al (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891

    PubMed  CAS  Google Scholar 

  • Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365:488–492

    Article  PubMed  CAS  Google Scholar 

  • Molkentin JD, Lu JR, Antos CL et al (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Matsumoto K, Mizuno S et al (2005) Hepatocyte growth factor prevents tissue fibrosis, remodeling, and dysfunction in cardiomyopathic hamster hearts. Am J Physiol Heart Circ Physiol 288:H2131–2139

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell KA, Wentzel EA, Zeller KI et al (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    Article  PubMed  Google Scholar 

  • Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216:671–680

    Article  PubMed  CAS  Google Scholar 

  • Poy MN, Eliasson L, Krutzfeldt J et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230

    Article  PubMed  CAS  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  PubMed  CAS  Google Scholar 

  • Reis-Filho JS, Westbury C, Pierga JY (2006) The impact of expression profiling on prognostic and predictive testing in breast cancer. J Clin Pathol 59:225–231

    Article  PubMed  CAS  Google Scholar 

  • Ricci R, Eriksson U, Oudit GY et al (2005) Distinct functions of junD in cardiac hypertrophy and heart failure. Genes Dev 19:208–213

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez A, Griffiths-Jones S, Ashurst JL et al (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910

    Article  PubMed  CAS  Google Scholar 

  • Sachs A (2000) Translational control of gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Samuel JL, Barrieux A, Dufour S et al (1991) Accumulation of fetal fibronectin mRNAs during the development of rat cardiac hypertrophy induced by pressure overload. J Clin Invest 88:1737–1746

    Article  PubMed  CAS  Google Scholar 

  • Sano M, Abdellatif M, Oh H et al (2002) Activation and function of cyclin T-Cdk9 (positive transcription elongation factor-b) in cardiac muscle-cell hypertrophy. Nat Med 8:1310–1317

    Article  PubMed  CAS  Google Scholar 

  • Sayed D, Hong C, Chen IY et al (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100:416–424

    Article  PubMed  CAS  Google Scholar 

  • Seggerson K, Tang L, Moss EG (2002) Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev Biol 243:215–225

    Article  PubMed  CAS  Google Scholar 

  • Shcherbata HR, Hatfield S, Ward EJ et al (2006) The MicroRNA pathway plays a regulatory role in stem cell division. Cell Cycle 5:172–175

    PubMed  CAS  Google Scholar 

  • Sokol NS, Ambros V (2005) Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev 19:2343–2354

    Article  PubMed  CAS  Google Scholar 

  • Swalla BJ, Jeffery WR (1996) PCNA mRNA has a 3′UTR antisense to yellow crescent RNA and is localized in ascidian eggs and embryos. Dev Biol 178:23–34

    Article  PubMed  CAS  Google Scholar 

  • Thomson JM, Newman M, Parker JS et al (2006) Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20:2202–2207

    Article  PubMed  CAS  Google Scholar 

  • Tran N, McLean T, Zhang X et al (2007) MicroRNA expression profiles in head and neck cancer cell lines. Biochem Biophys Res Commun 358:12–17

    Article  PubMed  CAS  Google Scholar 

  • van Rooij E, Sutherland LB, Liu N et al (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103:18255–18260

    Article  PubMed  Google Scholar 

  • van Rooij E, Sutherland LB, Qi X et al (2007) Control of stress-dependent cardiac growth and gene expression by a MicroRNA. Science 316:575–579

    Article  PubMed  Google Scholar 

  • Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261

    Article  PubMed  CAS  Google Scholar 

  • Wada H, Ivester CT, Carabello BA et al (1996) Translational initiation factor eIF-4E. A link between cardiac load and protein synthesis. J Biol Chem 271:8359–8364

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Liu CL, Storey JD et al (2002) Precision and functional specificity in mRNA decay. Proc Natl Acad Sci USA 99:5860–5865

    Article  PubMed  CAS  Google Scholar 

  • Weber B, Stresemann C, Brueckner B et al (2007) Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle 6:1001–1005

    PubMed  CAS  Google Scholar 

  • Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA 103:4034–4039

    Article  PubMed  CAS  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Lin H, Xiao J et al (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13:486–491

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Azhar G, Chai J et al (2001) Cardiomyopathy in transgenic mice with cardiac-specific overexpression of serum response factor. Am J Physiol Heart Circ Physiol 280:H1782–1792

    PubMed  CAS  Google Scholar 

  • Zhang CL, McKinsey TA, Chang S et al (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110:479–488

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Ransom JF, Li A et al (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1–2. Cell 129:303–317

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Ruan J, Wang G et al (2007) Characterization and identification of MicroRNA core promoters in four model species. PLoS Comput Biol 3:0412–0423

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abdellatif, M. (2008). MicroRNAs and Their Potential. In: Erdmann, V.A., Poller, W., Barciszewski, J. (eds) RNA Technologies in Cardiovascular Medicine and Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78709-9_2

Download citation

Publish with us

Policies and ethics