Skip to main content

Iron minerals formed by dissimilatory iron-and sulfur reducing bacteria studied by Mössbauer spectrometry

  • Conference paper
ICAME 2007

Abstract

Zero-field and in-field Mössbauer investigations and electron paramagnetic resonance (EPR) measurements to follow the kinetics of the iron mineral formation by thermophilic dissimilatory anaerobic Fe(III)-reducing bacteria (strain Z-0001) and anaerobic alkaliphilic bacteria (strain Z-0531) were carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balashova, V.V., Zavarzin, G.A.: Anaerobic reduction of iron oxide by a hydrogen-oxidizing bacterium. Mikrobiologiya 48, 773–778 (1979)

    Google Scholar 

  2. Lovley, D.R., Phillips, E.J.P.: Organic matter mineralization with the reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51, 683–689 (1986)

    Google Scholar 

  3. Lovley, D.R., Giovannoni, S.J., White, D.S., Champine, J.E., Phillips, E.J.P., Gorby, Y.A., Goodwin, S.: Geobacter metallireducens gen. nov., sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159, 336–344 (1993)

    Article  Google Scholar 

  4. Lovley, D.R., Stolz, J.F., Nord, G.L., Phillips, E.J.P.: Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330, 252–254 (1987)

    Article  ADS  Google Scholar 

  5. Slobodkin, A.I., Eroshchev-Shak, V.A., Kostrikina, N.A., et al.: Obrazovanie magnetita termofil’nymi anaerobnymi mikroorganizmami. Dokl. Akad. Nauk. 345, 694–697 (1995) (in Russian)

    Google Scholar 

  6. Straub, K.L., Benz, M., Schink, B.: Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol. Rev. 34, 181–186 (2001)

    Article  Google Scholar 

  7. Robbins, E.I.: Bacteria and archaea in acidic environments and a key to morphological identification. Hydrobiologia 4331, 61–89 (2000)

    Article  Google Scholar 

  8. Kusel, K.: Microbial cycling of iron and sulfur in acidic coal mining lake sediments. Water, Air Soil Pollut. 3, 67–90 (2003)

    Google Scholar 

  9. Zavarzina, D.G., Sokolova, T.G., Tourova, T.P., et al.: Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction. Exremophiles 11, 1–7 (2007)

    Article  Google Scholar 

  10. Slobodkin, A.I., Reysenbach, A.-L., Strutz, N., Dreier, M., Wiegel, J.: Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Int. J. Syst. Bacteriol. 47, 541–547 (1997)

    Article  Google Scholar 

  11. Zavarzina, D.G., Kolganova, T.V., Boulygina, E.S., Kostrikina, N.A., Tourova, T.P., Zavarzin, G.A.: Geoalkalibacter ferrihydriticus gen. nov. sp. nov., the first alkaliphilic representative of the family geobacteraceae, isolated from a soda lake. Microbiology 75, 673–668 (2006)

    Google Scholar 

  12. Koksharov, Yu.A., Sherle, A.I., Tikhonov, A.N.: Thermo-induced changes in EPR spectra of metal-free oligo- and polyphthalocyanines. Synth. Met. 149, 19–29 (2005)

    Article  Google Scholar 

  13. Chistyakova, N.I., Rusakov, V.S., Zavarzina, D.G., Kozerenko, S.V.: Formation of the magneto-ordering phase by thermophilic Fe(III)-reducing bacteria: Mössbauer study. Phys. Met. Metallogr. 92, S138–S142 (2001)

    Google Scholar 

  14. Chistyakova, N.I., Zavarzina, D.G., Rusakov, V.S.: Messbauerovskie issledovaniia protsessov obrazovaniia mineralov termofil’nymi zhelezoredutsiruiushchimi bakteriiami. Izv. Akad. Nauk, Ser. Fiz. 67, 1354–1358 (2003). (in Russian)

    Google Scholar 

  15. Chistyakova, N.I., Rusakov, V.S., Zavarzina, D.G.: Mössbauer investigation of biologically-induced mineralization processes. Hyperfine Interact. (C) 5, 397–400 (2002)

    Google Scholar 

  16. Chystyakova, N.I., Rusakov, V.S., Zavarzina, D.G., Slobodkin, A.I., Gorohova, T.V.: Mossbauer study of magnetite formation by iron- and sulfate-reducing bacteria. Hyperfine Interact. 156–157, 411–415 (2004)

    Article  Google Scholar 

  17. Chystyakova, N.I., Rusakov, V.S., Zavarzina, D.G., Slobodkin, A.I., Gorohova, T.V.: Mossbauer spectroscopy in studying magnetite formed by iron- and sulfite-reducing bacteria. Czechoslov. J. Phys. 50, 781–790 (2005), Papers Int. Colloquium ‘Mössbauer Spectroscopy in Materials Science”, MSMS’4, Czech Republic

    Article  ADS  Google Scholar 

  18. Koksharov, Yu.A., Gubin, S.P., Kosobudsky, I.D., et al.: Low temperature electron paramagnetic resonance anomalies in Fe-based nanoparticles. J. Appl. Phys. 88, 1587–1592 (2000)

    Article  ADS  Google Scholar 

  19. Hurd, C.M.: Varieties of magnetic order in solids. Contemp. Phys. 23, 469–493 (1982)

    Article  ADS  Google Scholar 

  20. Coey, J.M.D., Readman, P.W.: New spin structure in an amorphous ferric gel. Nature 246, 476–478 (1973)

    Article  ADS  Google Scholar 

  21. Coey, J.M.D.: Interpretation of the Mössbauer spectra of speromagnetic materials. Phys.: Condens. Matter 5, 7297–7300 (1993)

    Article  ADS  Google Scholar 

  22. Weiss, B.P., Kim, S.S., Kirschvink, J.L., et al.: Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite. Earth Planet Sci. Lett. 224, 73–89 (2004)

    Article  ADS  Google Scholar 

  23. Bickford, Jr.: Ferromagnetic resonance absorption in magnetite single crystals. Phys. Rev. B 78, 449–457 (1950)

    Article  ADS  Google Scholar 

  24. Kopp, R.E., Weiss, B.P., Maloof, A.C., et al.: Chains, clumps, and strings: magnetofossil taphonomy with ferromagnetic resonance spectroscopy. Earth Planet. Sci. Lett. 247, 10–25 (2006)

    Article  ADS  Google Scholar 

  25. Da Costa, G.M., De Grave, E., Vandenberghe, R.E.: Mössbauer studies of magnetite and Al-substituted maghemites. Hyperfine Interact. 117, 207–243 (1998)

    Article  ADS  Google Scholar 

  26. Helgason, O., Greneche, J.M., Berry, F.J., et al.: Tin- and titanium-doped γ-Fe2O3 (maghemite). J. Phys.: Condens. Matter 13, 10785–10797 (2001)

    Article  ADS  Google Scholar 

  27. Šepelák, V., Baabe, D., Litterst, F.J., Becker, K.D.: Structural disorder in the high-energy milled magnesium ferrite. J. Appl. Phys. 88, 5884–5893 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Chistyakova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Chistyakova, N.I., Rusakov, V.S., Nazarova, K.A., Koksharov, Y.A., Zavarzina, D.G., Greneche, JM. (2008). Iron minerals formed by dissimilatory iron-and sulfur reducing bacteria studied by Mössbauer spectrometry. In: Gajbhiye, N.S., Date, S.K. (eds) ICAME 2007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78697-9_7

Download citation

Publish with us

Policies and ethics