ICAME 2007 pp 189-196 | Cite as

Anomalous magnetic behaviour of zinc and chromium ferrites without any hyperfine splitting

Conference paper


Two groups of ferrite namely zinc ferrite and chromium ferrite were synthesized by citrate precursor route in the size range of 8 to 35 nm. We have studied the structural and magnetic behaviour of these ferrites using X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Mössbauer spectroscopic techniques. Our studies show that the nanocrystalline ferrites interact with the hand magnet strongly and give large magnetization in the VSM measurement. The maximum magnetization in the samples sensitively depends on the particle size of synthesized ferrites. We observed as large as 28 Am2/kg of magnetization in the zinc ferrite nanoparticles while that in chromium ferrite is around 11 Am2/kg. In spite of the large magnetization in the zinc ferrite nanoparticles we did not observe any hyperfine splitting even down to 12 K of temperature. Similar behaviour is also observed for chromium ferrite down to 16 K.


Mössbauer spectroscopy Ferrites Nanophase iron Magnetic nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ho, J.C., Hamdeh, H.H., Ches, Y.Y., et al.: Low-temperature calorimetric properties of zinc ferrite nanoparticles. Phys. Rev. B 52, 10122–10126 (1995)CrossRefADSGoogle Scholar
  2. 2.
    Hamdeh, H.H., Ho, J.C., Oliver, S.A.: Magnetic properties of partially-inverted zinc ferrite aerogel powders, J. Appl. Phys. 81, 1851–1857 (1997)CrossRefADSGoogle Scholar
  3. 3.
    Zhou, Z.H., Xue, J.M., Chan, H.S.O.: Transparent magnetic composites of ZnFe2O4 nanoparticles in silica. J. Appl. Phys. 90, 4169–4174 (2001)CrossRefADSGoogle Scholar
  4. 4.
    Tada, M., Hatanaka, S., Sanbonsugi, H.: Method for synthesizing ferrite nanoparticles ∼30 nm in diameter on neutral pH condition for biomedical applications. J. Appl. Phys. 93, 7566–7568 (2003)CrossRefADSGoogle Scholar
  5. 5.
    Oliver, S.A., Hamdeh, H.H., Ho, J.C.: Localized spin canting in partially inverted ZnFe2O4 fine powders. Phys. Rev. B 60, 3400–3405 (1999)CrossRefADSGoogle Scholar
  6. 6.
    Kundu, A., Anand, S., Verma, H.C.: A citrate process to synthesize nanocrystalline zinc ferrite from 7 to 23 nm crystallite size. Powder Technol. 132, 131–136 (2003)CrossRefGoogle Scholar
  7. 7.
    Jiang, J.S., Yang, X.L., Gao, L.: Synthesis and characterization of nanocrystalline zinc ferrite. Nanostruct. Mater. 12, 143–146 (1999)CrossRefGoogle Scholar
  8. 8.
    Upadhyay, C.: In Controlled formation of nanosize spinel ferrites (4–15 nm) and their magnetic and structural studies, Ph.D. Thesis, IIT Kanpur (2003)Google Scholar
  9. 9.
    Robbins, M.,Wertheim, G.K., Sherwood, R.C., Buchanan, D.N.E.: Magnetic properties and site distributions in the system \({\rm FeCr_2 O_4 -Fe_3 O_4 \left( {Fe^{2+}+Cr_{2-x} Fe_x^{3+} O_4 } \right.}\). J. Phys. Chem. Solids 32, 717–729 (1971)CrossRefADSGoogle Scholar
  10. 10.
    Kundu, A., Upadhyay, C., Verma, H.C.: Magnetic properties of a partially inverted zinc ferrite synthesized by a new coprecipitation technique using urea. Phys. Lett. A 311, 410–415 (2003)CrossRefADSGoogle Scholar
  11. 11.
    Shenoy, S.D., Joy, P.A., Anantharaman, M.R.: Effect of mechanical milling on the structural, magnetic and dielectric properties of coprecipitated ultrafine zinc ferrite. J. Magn. Magn. Mater. 269, 217–226 (2004)CrossRefADSGoogle Scholar
  12. 12.
    Chinawamy, C.N., Narayanasamy, A., et al.: Magnetic properties of nanostructured ferrimagnetic zinc ferrite. J. Phys. Condens. Matter 12, 7795–7805 (2000)CrossRefADSGoogle Scholar
  13. 13.
    Roy, M.K., Haldar, B., Verma, H.C.: Characteristic length scales of nanosize zinc ferrite. Nanotechnology 17, 232–237 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of PhysicsI.I.T. KanpurKanpurIndia

Personalised recommendations