Advertisement

ICAME 2007 pp 1063-1068 | Cite as

Preferential occupation of pyroxene sites by iron in diogenite meteorites

  • H. C. Verma
  • V. C. Tewari
  • B. S. Paliwal
  • R. P. Tripathi
Conference paper

Abstract

Three diogenite meteorites ALHA77256-121, Tatahounie and Bilanga are studied using Mössbauer spectroscopy to look at the iron occupancy in the two inequivalent pyroxene sites. Though the three meteorites belong to three different conditions, one is an Antarctica find, one is 75 years old fall and one is a recent fall, the iron occupancy in pyroxene sites is very similar. Fe2 +  occupies only the less distorted site and hence a single sharp doublet is observed in the Mössbauer spectra of all these samples. In contrast eucrites show a distribution of iron ions in the two sites of pyroxenes.

Keywords

Mössbauer spectroscopy Diogenites Eucrites Pyroxene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grady, M.M.: Catalogue of Meteorites, 5th edn. pp. 689. Cambridge University Press, Cambridge (2000)Google Scholar
  2. 2.
    McCord, T.B., Adams, J.B., Johnson, T.V.: Asteroid Vesta: spectral reflectivity and compositional implications. Science 168, 1445–1447 (1970)CrossRefADSGoogle Scholar
  3. 3.
    Drake, M.J.: The eucrite/Vesta story. Meteorit. Planet. Sci. 36, 501–513 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Binzel, R.P., Xu, S.: Chips off of asteroid 4 Vesta: evidence for the parent body of basaltic achondrite meteorites. Science 260, 186–191 (1993)CrossRefADSGoogle Scholar
  5. 5.
    Burbine, T.H., Buchanan, P.C., Binzel, R.P., Bus, S.J., Hiroi, T., Hinrichs, J.L., Meibom, A., McCoy, T.J.: Vesta, vestoids, and the howardite, eucrite, diogenite group: relationships and the origin of spectral differences. Meteorit. Planet. Sci. 36, 761–781 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Hiroi, T., Pieters, C.M., Takeda, H.: Grain size of the surface regolith of asteroid 4 Vesta estimated from its reflectance spectrum in comparison with HED meteorites. Meteoritics 29, 394–396 (1994)ADSGoogle Scholar
  7. 7.
    Cochran, A.L., Vilas, F.: The McDonald observatory serendipitous UV/blue spectral survey of asteroids. Icarus 127, 121–129 (1998)CrossRefADSGoogle Scholar
  8. 8.
    Sykes, M.V., Vilas, F.: Closing in on HED meteorite sources. Earth Planets Space 53, 1077–1083 (2001)ADSGoogle Scholar
  9. 9.
    Dunlap, R.A.: A Mössbauer effect investigation of the enstatite chondrite from Abee, Canada. Hyperfine Interact. 110, 209–215 (1997)CrossRefADSGoogle Scholar
  10. 10.
    Tripathi, R.P., Sharma, S.K., Srivastava, K.L., Verma, H.C.: Mössbauer spectroscopic studies of Piplia Kalan (Eucrite) and Lohawat (Howardite) meteorites. Meteorit. Planet. Sci. 35, 201–204 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Paliwal, B.S., Tripathi, R.P., Verma, H.C., Sharma, S.K.: Classification of the Didwana-Rajod meteorite: a Mössbauer spectroscopic study. Meteorit. Planet. Sci. 35, 639–642 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Verma, H.C., Jee, K., Tripathi, R.P.: Systematics of Mössbauer absorption areas in ordinary chondrites and applications to a newly fallen meteorite in Jodhpur, India. Meteorit. Planet. Sci. 38, 963–967 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Costa, T.V.V., Vieira, V.W., de Araújo, M.A.B.: Low temperature Mössbauer spectra of the Ibitira meteorite (achondrite). Phys. Scr. 40, 702–704 (1989)CrossRefADSGoogle Scholar
  14. 14.
    Zbik, M., Yakovlev, O.I., Polosin, A.V.: The melting crust of the Stannern eucrite. Geochem. Int. 26, 108–115 (1989)Google Scholar
  15. 15.
    Gismelseed, A.M., Khangi, F., Ibrahim, A., Yousuf, A.A., Worthing, M.A., Rais, A., Elzain, M.E., Brooks, C.K., Sutherland, H.H.: Studies on Al Kidirate and Kapoeta meteorites. Hyperfine Interact. 91, 551–555 (1994)CrossRefADSGoogle Scholar
  16. 16.
    Mason, B.: In Antarctic Meteorite Descriptions. Antarctica Meteorite Newsletter vol. 4, p. 46 (1981)Google Scholar
  17. 17.
    Lacroix, A.: Sur la chute récente (27 juin 1931) d’une météorite asidérite dans l’extrême Sud Tunisien. C. R. Acad. Sci. Paris 193, 305–309 (1931)Google Scholar
  18. 18.
    Sears, D.W.G., Benoit, P.H., Sears, H., Batchelor, J.D., Symes, S.: The natural thermoluminescence of meteorites: III. Lunar and basaltic meteorites. Geochim. Cosmochim. Acta 55, 3167–3180 (1991)CrossRefADSGoogle Scholar
  19. 19.
    Mittlefehldt, D.W.: The genesis of diogenites and HED parent body petrogenesis. Cosmochim. Acta 58, 1537–1552 (1994)CrossRefADSGoogle Scholar
  20. 20.
    Clayton, R.N., Toshiko, K.M.: Oxygen isotope studies of achondrites. Geochim. Cosmochim. Acta 60, 1999–2017 (1996)CrossRefADSGoogle Scholar
  21. 21.
    Kolar, S.E., Domanik, K.J., Musslewhite, D.S., Drake, M.J.: Bilanga: a unique diogenite. Lunar Planet. Sci. XXXIII, 1338 (2002)ADSGoogle Scholar
  22. 22.
    Pätsch, M., Weber, H.W., Schultz, L.: Noble gas investigations of new meteorites from Africa. Lunar Planet. Sci. XXXII, 1556 (2001)Google Scholar
  23. 23.
    Hafner, S.S.: In: Gonsor, U. (eds.) Mössbauer Spectroscopy, pp. 167–199. Springer, NY (1975)Google Scholar
  24. 24.
    Vieira, V.W.A., Knudsen, J.M., Roy-Poulsen, N.O., Campsie, J.: Mössbauer spectroscopy of pyroxenes from two meteorites (achondrites). Phys. Scr. 27, 437–444 (1983)CrossRefADSGoogle Scholar
  25. 25.
    Zema, M., Domeneghetti, M.C., Molin, G.M., Tazzoli, V.: Cooling rates of diogenites: a study of Fe2 + –Mg ordering in orthopyroxene by X-ray single-crystal diffraction. Meteorit. Planet. Sci. 32, 855–862 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • H. C. Verma
    • 1
  • V. C. Tewari
    • 2
  • B. S. Paliwal
    • 3
  • R. P. Tripathi
    • 4
  1. 1.Department of PhysicsIITKanpurIndia
  2. 2.Wadia Institute of Himalayan GeologyDehradunIndia
  3. 3.Department of GeologyJ N V UniversityJodhpurIndia
  4. 4.Department of PhysicsJ N V UniversityJodhpurIndia

Personalised recommendations