Ischaemic and Inflammatory Biomarkers in Cardiovascular Disease

  • Gopinath Gnanasegaran
  • Gregory Shabo
  • John R. Buscombe

Abstract

Despite major advances in diagnosis and management, coronary artery disease continues to be a major public health problem. Patients with chest pain represent a heterogeneous group with varying presentation or severity of coronary artery disease and cardiac risk. Early prognostic evaluation of future cardiovascular risk is necessary for the application of appropriate treatment and optimal management in patients with chest pain. The role of cardiac markers in the diagnosis and management of patients with chest pain or in patients with suspected acute coronary syndromes (ACS) have improved dramatically with major technological advances. Currently various serum markers such as creatine kinase (CK)-MB, lactate dehydrogenase (LDH), myoglobin and cardiac troponins T (cTnT) and I (cTnI) are readily available and used as plasma diagnostic markers of myocardial necrosis in acute myocardial infarction (AMI) [1–18] (Table 7.1).

Keywords

Acute Coronary Syndrome Acute Myocardial Infarction Creatine Kinase Acute Myocardial Infarction Cardiac Troponin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander RW, Pratt CM, Ryan TJ, Roberts R (2001) Diagnosis and management of patients with acute myocardial infarction In Fuster F, Alexander RW, O’Rourke RA (eds), Hurst’s: The Heart, 10th edn. McGraw-Hill, New York, pp. 1275–1360.Google Scholar
  2. 2.
    World Health Organisation (1981) WHO criteria for the diagnosis of acute myocardial infarction. Proposal for the multinational monitoring of trends and determinants of cardiovascular disease. Geneva: Cardiovascular diseases Unit, WHO.Google Scholar
  3. 3.
    Chan PD, Winkle PJ (1997) Current Clinical Strategies: History and Physical Examination in Medicine, 2nd edn. CCS Publishing. Laguna Hills, CA, pp. 7–11.Google Scholar
  4. 4.
    de Winter RJ, Koster RW, Sturk A, Sanders GT (1995) Value of myoglobin, troponin T, and CK-MB mass in ruling out an acute myocardial infarction in the emergency room. Circulation 92:3401–407.PubMedGoogle Scholar
  5. 5.
    Wu AH (1997) Use of cardiac markers as assessed by outcomes analysis. Clin Biochem.30:339–350.PubMedCrossRefGoogle Scholar
  6. 6.
    Wong SS (1996) Strategic utilization of cardiac markers for the diagnosis of acute myocardial infarction. Ann Clin Lab Sci.26:300–312.Google Scholar
  7. 7.
    Fischbach F (2000) A Manual of Laboratory and Diagnostic Tests, 6th edn. Lippincott Williams & Wilkins, Philadelphia, PA.Google Scholar
  8. 8.
    Morris S, Wu AH, Heller GV (1996) The role of cardiac imaging and biochemical markers in patients with acute chest pain. Curr Opin Cardiol.11:386–393.PubMedCrossRefGoogle Scholar
  9. 9.
    Schreiber DH (2002) Update on cardiac markers in the emergency department. eMedicine Journal [serial online]; 3(2). www.emedicine.com.Google Scholar
  10. 10.
    Christenson RH, Duh SH, Sanhai WR et al. (2001) Characteristics of an albumin cobalt binding test for assessment of acute coronary syndrome patients: a multicenter study. Clin Chem 47:464–470.PubMedGoogle Scholar
  11. 11.
    Sinha MK, Roy D, Gaze DC, Collinson PO, Kaski JC (2004) Role of ischemia modified albumin, a new biochemical marker of myocardial ischaemia, in the early diagnosis of acute coronary syndromes. Emerg Med J 21:29–34.PubMedCrossRefGoogle Scholar
  12. 12.
    Melanson SF, Tanasijevic MJ (2005) Innovative Cardiovascular technologies laboratory diagnosis of acute myocardial injury Cardiovasc Pathol 14 156–161.PubMedCrossRefGoogle Scholar
  13. 13.
    Scirica BM, Morrow DA (2004) Troponins in acute coronary syndromes. Prog Cardiovasc Disease 47:177–188.CrossRefGoogle Scholar
  14. 14.
    Marshall WJ, Banget SK (2004) Lipids, lipoproteins, cardiovascular disease. In Clinical Chemistry, 5th edn. Elseiver, pp. 255–271.Google Scholar
  15. 15.
    Walmsley RN, White GH (1994) Plasma Enzymes, 3rd edn. Blackwell Science, pp. 291–320.Google Scholar
  16. 16.
    Laker MF (1996) Enzymes in body fluids. In Clinical Biochemistry for Medical Students. WB Saunders.Google Scholar
  17. 17.
    Kaplan A, Opheim KE Enzymes. In Clinical Chemistry – Interpretation and Techniques. Lippincott Williams & Wilkins, Philadelphia, PA, pp. 277–311.Google Scholar
  18. 18.
    Amsterda EA Deedwania P (2005) Bedside evaluation of cardiac markers, Point-of-care testing can differentiate acute coronary syndromes. Postgrad Med 118:3. Google Scholar
  19. 19.
    Collinson PO (1998) Troponin T or troponin I or CK-MB (or none?). Eur Heart J 19:N16–N24.PubMedCrossRefGoogle Scholar
  20. 20.
    Fischbach F (2000) A Manual of Laboratory and Diagnostic Tests, 6th edn. Lippincott Williams & Wilkins, Philadelphia, PA.Google Scholar
  21. 21.
    American Heart Association. 2001 Heart and Stroke Statistical Update. Dallas, Tex: American Heart Association; 2000. Available at: http://www.americanheart.org/statistics/index.html. Google Scholar
  22. 22.
    Wong SS (1996) Strategic utilization of cardiac markers for the diagnosis of acute myocardial infarction. Ann Clin Lab Sci 26:301–312.PubMedGoogle Scholar
  23. 23.
    Balk EM, Ioannidis JPA, Salem D, Chew PW, Lau J (2001) Accuracy of biomarkers to diagnose acute cardiac ischemia in the emergency department: a meta-analysis. Ann Emerg Med.37:478–494.PubMedCrossRefGoogle Scholar
  24. 24.
    Puleo PR, Meyer D, Wathen C et al. (1994) Use of a rapid assay of subforms of creatine kinase-MB to diagnose or rule out acute myocardial infarction. N Engl J Med 1:561–566.CrossRefGoogle Scholar
  25. 25.
    Puleo PR, Guadagno PA, Roberts R, Perryman MB (1989) Sensitive, rapid assay of subforms of creatine kinase MB in plasma. Clin Chem 35:1452–1455.PubMedGoogle Scholar
  26. 26.
    Apple FS, Rogers MA, Sherman WM, Costill DL, Hagerman FC, Ivy JL (1984) Profile of creatine kinase isoenzymes in skeletal muscles of marathon runners. Clin Chem 30:413–416.PubMedGoogle Scholar
  27. 27.
    Siegel AJ, Silverman LM, Evans WJ (1983). Elevated skeletal muscle creatine kinase MB isoenzyme levels in marathon runners. JAMA 25 250:2835–2837.CrossRefGoogle Scholar
  28. 28.
    Keshgegian AA, Feinberg NV (1984) Serum creatine kinase MB isoenzyme in chronic muscle disease. Clin Chem 30:575–578.PubMedGoogle Scholar
  29. 29.
    Shahangian S, Ash KO, Wahlstrom NO Jr, Warden GD, Saffle JR, Taylor A Jr, Green LS (1984) Creatine kinase and lactate dehydrogenase isoenzymes in serum of patients suffering burns, blunt trauma, or myocardial infarction. Clin Chem 30:1332–1338.PubMedGoogle Scholar
  30. 30.
    McBride JW, Labrosse KR, McCoy HG, Ahrenholz DH, Solem LD, Goldenberg IF (1986) Is serum creatine kinase-MB in electrically injured patients predictive of myocardial injury?
JAMA 14:764–768.CrossRefGoogle Scholar
  31. 31.
    Tzvetanova E (1971) Aldolase isoenzymes in serum and muscle from patients with progressive muscular dystrophy and from human foetus. J Neurol Sci 14:483–489.PubMedCrossRefGoogle Scholar
  32. 32.
    Apple FS, Ricchiuti V, Voss EM, Anderson PA, Ney A, Odland M (1998) Expression of cardiac troponin T isoforms in skeletal muscle of renal disease patients will not cause false-positive serum results by the second generation cardiac troponin T assay. Eur Heart J 19:N30–N33.PubMedGoogle Scholar
  33. 33.
    Panteghini M (2006) The new definition of myocardial infarction and the impact of troponin determination on clinical practice International. J Cardiol 106:298–306.Google Scholar
  34. 34.
    Sarko J, Pollack C V Jr (2002) Clinical laboratory in emergency medicine, cardiac troponins. J Emergency Med 23:57–65. CrossRefGoogle Scholar
  35. 35.
    Sharma S, Jackson PG , Makan J (2004) Cardiac troponins. J Clin Pathol 57:1025–1026.PubMedCrossRefGoogle Scholar
  36. 36.
    Bertrand ME, Simoons ML, Fox KA et al. (2002) Management of acute coronary syndromes in patients presenting without persistent ST-segment elevation, Task Force Report, The Task Force on the Management of Acute Coronary Syndromes of the European Society of Cardiology. Eur Heart J 23:1809–1840.PubMedCrossRefGoogle Scholar
  37. 37.
    Gupta M, Lent RW, Kaplan EL, Zabriskie JB (2002) Serum cardiac troponin I in acute rheumatic fever. Am J Cardiol 89:779–782.PubMedCrossRefGoogle Scholar
  38. 38.
    Dispenzieri A, Kyle RA, Gertz MA et al. (2003) Survival in patients with primary systemic amyloidosis and raised serum cardiac troponins. Lancet 361:1787–1789.PubMedCrossRefGoogle Scholar
  39. 39.
    Sybrandy KC, Cramer MJM, Burgersdijk C (2003) Diagnosing cardiac contusion: old wisdom and new insights. Heart 89:458–489.CrossRefGoogle Scholar
  40. 40.
    Dworschak M, Franz M, Khazen C, Czerny M, Haisjackl M, Hiesmayr M. (2001) Mechanical trauma as the major cause of troponin T release after transvenous implantation of cardioverter/defibrillators. Cardiology 95:212–214.PubMedCrossRefGoogle Scholar
  41. 41.
    Cardinale D, Sandri MT, Martinoni A et al. (2000) Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol 36:517–522.PubMedCrossRefGoogle Scholar
  42. 42.
    Sato Y, Yamada T, Taniguchi R et al. (2001) Persistently increased serum concentrations of cardiac troponin T in patients with idiopathic dilated cardiomyopathy are predictive of adverse outcomes. Circulation 103:369–374.PubMedGoogle Scholar
  43. 43.
    Wright RS, Williams BA, Cramner H et al. (2002) Elevations of cardiac troponin I are associated with increased short-term mortality in noncardiac critically ill emergency department patients. Am J Cardiol 90:634–636.PubMedCrossRefGoogle Scholar
  44. 44.
    Apple FS, Murakami MM, Pearce LA, Herzog CA (2002) Predictive value of cardiac troponin I and T for subsequent death in end-stage renal disease. Circulation 106:2941–2945.PubMedCrossRefGoogle Scholar
  45. 45.
    Gaze DC, Lawson GJ, Harris A, Collinson PO (2003) Evidence of myocyte necrosis in glycogen storage disease type II. Clin Chem 49:A39Google Scholar
  46. 46.
    Chance JJ, Segal JB, Wallerson G et al. (2001) Cardiac troponin T and Creactive protein as markers of acute cardiac allograft rejection. Clin Chim Acta 312:31–39.PubMedCrossRefGoogle Scholar
  47. 47.
    Missov E, Mentzer W, Laprade M et al.( 2001) Cardiac markers of injury in hemoglobinopathy patients with transfusion hemosiderosis. J Am Coll Cardiol 37:470.Google Scholar
  48. 48.
    Hamwi SM, Sharma AK, Weissman NJ et al.( 2003) Troponin-I elevation in patients with increased left ventricular mass. Am J Cardiol 92:88–90.PubMedCrossRefGoogle Scholar
  49. 49.
    Arlati S, Brenna S, Prencipe L et al. (2000) Myocardial necrosis in ICU patients with acute non-cardiac disease: a prospective study. Intensive Care Med 26:31–37.PubMedCrossRefGoogle Scholar
  50. 50.
    Mutch WJ, Kulkarmi UV, Croal BL, Simpson WG (2001) Cardiac marker levels in hypothyroidism. Clin Chem 47:A199. Google Scholar
  51. 51.
    Lauer B, Niederau C, Kuhl U et al. (1997) Cardiac troponin T in patients with clinically suspected myocarditis. J Am Coll Cardiol 30:1354–1359.PubMedCrossRefGoogle Scholar
  52. 52.
    Lopez-Jimenez F, Goldman L, Sacks DB et al. (1997) Prognostic value of cardiac troponin T after noncardiac surgery: 6-month follow-up data. J Am Coll Cardiol 29:1241–1245.PubMedCrossRefGoogle Scholar
  53. 53.
    Giannitsis E, Muller-Bardorff M, Kurowski V et al. (2000) Independent prognostic value of cardiac troponin T in patients with confirmed pulmonary embolism. Circulation 102:211–217.PubMedGoogle Scholar
  54. 54.
    Spies C, Haude V, Fitzner R et al. (1998) Serum cardiac troponin T as a prognostic marker in early sepsis. Chest 113:1055–1063.PubMedCrossRefGoogle Scholar
  55. 55.
    Plebani M, Zaninotto M (1998) Diagnostic strategies in myocardial infarction using myoglobin measurement. Eur Heart J 19:N12–N15.PubMedGoogle Scholar
  56. 56.
    Rao M, Jaber, B L, Balakrishnan VS (2006) Inflammatory biomarkers and cardiovascular risk: association or cause and effect? Seminars in Dialysis 19:129–135.PubMedCrossRefGoogle Scholar
  57. 57.
    Heger JW, Niemann JT, Roth RF, Criley JM (1998) Cardiology, 4th edn. Williams & Wilkins, Baltimore, MD.Google Scholar
  58. 58.
    Wong SS (1996) Strategic utilization of cardiac markers for the diagnosis of acute myocardial infarction. Ann Clin Lab Sci 26:301–312.PubMedGoogle Scholar
  59. 59.
    Conn HF et al. (eds) (2000) Conn’s Current Therapy. WB Saunders, Philadelphia, PA, pp. 291–319.Google Scholar
  60. 60.
    Kitsis RN, Jialal I (2006) Limiting myocardial damage during acute myocardial infarction by inhibiting C-reactive protein.New Engl J Med 3(355):513–515.CrossRefGoogle Scholar
  61. 61.
    Suleiman M, Khatib R, Agmon Y et al. (2006) Early inflammation and risk of long-term development of heart failure and mortality in survivors of acute myocardial infarction – predictive role of C-reactive protein. J Am Coll Cardiol 47:962–968.PubMedCrossRefGoogle Scholar
  62. 62.
    Kushner I, Broder ML, Karp D (1978) Control of the acute phase response. Serum C-reactive protein kinetics after acute myocardial infarction. J Clin Invest 61:235–242.PubMedCrossRefGoogle Scholar
  63. 63.
    de Beer FC, Hind CRK, Fox KM, Allan R, Maseri A, Pepys MB (1982). Measurement of serum C-reactive protein concentration in myocardial ischaemia and infarction. Br Heart J 47:239–243.PubMedCrossRefGoogle Scholar
  64. 64.
    Griselli M, Herbert J, Hutchinson WL, Taylor KM, Sohail M, Krausz T, Pepys MB (1999) C-reactive protein and complement are important mediators of tissue damage in acute myocardial infarction.J Exp Med 20(190):1733–1740.CrossRefGoogle Scholar
  65. 65.
    Seino Y, Ogata K, Takano T, Ishii J, Hishida H, Morita H, Takeshita H, Takagi Y, Sugiyama H, Tanaka T, Kitaura Y (2003) Use of a whole blood rapid panel test for heart-type fatty acid-binding protein in patients with acute chest pain: comparison with rapid troponin T and myoglobin tests. Am J Med 115:185–190.PubMedCrossRefGoogle Scholar
  66. 66.
    Chan CP, Sanderson JE, Glatz JF, Cheng WS, Hempel A, Renneberg R (2004) A superior early myocardial infarction marker Human heart-type fatty acid-binding protein. Z Kardiol 93:388–397.PubMedCrossRefGoogle Scholar
  67. 67.
    Garlichs CD, Eskafi S, Raaz D, Schmidt A, Ludwig J, Herrmann M, Klinghammer L, Daniel WG, Schmeisser A (2001) Patients with acute coronary syndromes express enhanced CD40 ligand/CD154 on platelets. Heart 86:649–655.PubMedCrossRefGoogle Scholar
  68. 68.
    Heeschen C, Dimmeler S, Hamm CW, van den Brand MJ, Boersma E, Zeiher AM, Simoons ML (2003) Soluble CD40 ligand in acute coronary syndromes. New Engl J Med 348:1104–1111.PubMedCrossRefGoogle Scholar
  69. 69.
    Brennan ML, Penn MS, Van Lente F (2003) Prognostic value of myeloperoxidase in patients with chest pain. New Engl J Med 349:1595–1604.PubMedCrossRefGoogle Scholar
  70. 70.
    Baldus S, Heeschen C, Meinertz T, Zeiher AM, Eiserich JP, Munzel T, Simoons ML, Hamm CW (2003) Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation 108:1440–1445.PubMedCrossRefGoogle Scholar
  71. 71.
    Klocke FJ, Baird MG, Lorell BH (2003) ACC/AHA/ASNC Guidelines for the clinical use of cardiac radionuclide imaging – executive summary. Circulation 108:1404.PubMedCrossRefGoogle Scholar
  72. 72.
    Johnson BD, Kip KE, Marroquin OC, Ridker PM (2004) Serum amyloid A as a predictor of coronary artery disease and cardiovascular outcome in women: the National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation 109:726–732.PubMedCrossRefGoogle Scholar
  73. 73.
    Bayes-Genis A, Conover CA, Overgaard MT (2001) Pregnancyassociated plasma protein A as a marker of acute coronary syndromes. New Engl J Med 345:1022–1029.PubMedCrossRefGoogle Scholar
  74. 74.
    Lindahl B, Toss H, Siegbahn A, Venge P, Wallentin L (2000) Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease. FRISC Study Group. Fragmin during Instability in Coronary Artery Disease. New Engl J Med 343:1139–1147.PubMedCrossRefGoogle Scholar
  75. 75.
    Toss H, Lindahl B, Siegbahn A, Wallentin L (1997) Prognostic influence of increased fibrinogen and C-reactive protein levels in unstable coronary artery disease. FRISC Study Group. Fragmin during Instability in Coronary Artery Disease. Circulation 96:4204–4210.PubMedGoogle Scholar
  76. 76.
    Becker RCC, Bovill E et al. (1996) Prognostic value of plasma fibrinogen concentration in patients with unstable angina and non-Q-wave myocardial infarction (TIMI IIIB trial).Am J Cardiol 78:142–147.CrossRefGoogle Scholar
  77. 77.
    Pollak H, Fischer M, Fritsch S, Enenkel W (1991) Are admission plasma fibrinogen levels useful in the characterization of risk groups after myocardial infarction treated with fibrinolysis? Thromb Haemost 66:406–409.PubMedGoogle Scholar
  78. 78.
    Ardissino D, Merlini PA, Gamba G et al. (1996) Thrombin activity and early outcome in unstable angina pectoris. Circulation 93:1634–1639.PubMedGoogle Scholar
  79. 79.
    Ernofsson M, Strekerud F, Toss H, Abildgaard U, Wallentin L, Siegbahn A (1998) Low-molecular weight heparin reduces the generation and activity of thrombin in unstable coronary artery disease. Thromb Haemost 79:491–494.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gopinath Gnanasegaran
    • 1
  • Gregory Shabo
    • 1
  • John R. Buscombe
    • 2
  1. 1.Department of Nuclear MedicineGuy’s & St. Thomas’ Hospital NHS Foundation TrustLondonUK
  2. 2.Department of Nuclear MedicineRoyal Free HospitalLondonUK

Personalised recommendations