Pathophysiology of Diabetic Vascular Complications

  • Francis Estrada
  • John R. Buscombe


Diabetes mellitus (DM) is one of the most common chronic diseases in the world. It is classified into type 1 DM, which constitute 10% of cases and type 2 DM, which accounts for 90% of cases. The incidence is increasing and it is estimated that the number of sufferers worldwide will rise from 135 million in 1995 to 300 million in the year 2025 [1].


Nitric Oxide Diabetic Vascular Complication Cular Smooth Muscle Cell Normal Epicardial Coronary Artery Vascular Smooth Muscle Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    King H, Aubert RE, Herman WH (1998) Global burden of diabetes, 1995–2025. Diabetes Care 21:1414–1431.PubMedCrossRefGoogle Scholar
  2. 2.
    Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV et al. (1999) Diabetes and cardiovascular disease. A statement for healthcare professionals from the American Heart Association. Circulation 100:1134–1146.PubMedGoogle Scholar
  3. 3.
    Garcia MJ, McNamara PM, Gordon T, Kannell WB (1974) Morbidity and mortality in diabetics in the Framingham population. Sixteen year followup. Diabetes 23:105–111.PubMedGoogle Scholar
  4. 4.
    Laing SP, Swerdlow AJ, Slater SD et al. (2003) Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes. Diabetologia 46:760–765.PubMedCrossRefGoogle Scholar
  5. 5.
    The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group (2005) Intensive diabetes treatment and cardiovascular disease in patients with Type 1 diabetes. N Engl J Med 353:2643–2653.CrossRefGoogle Scholar
  6. 6.
    Kannel WB and McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241:2035–2038. PubMedCrossRefGoogle Scholar
  7. 7.
    Soedamah-Muthu SS, Chaturvedi N, Toeller M, Ferriss B, Reboldi P, Michel G, Manes C, Fuller JH (2004) Risk factors for coronary heart disease in Type 1 diabetic patients in Europe. The EURODIAB Prospective Complications Study. Diabetes Care 27:530–537.PubMedCrossRefGoogle Scholar
  8. 8.
    Coutinho M, Gerstein HC, Wang Y, Yusuf S (1999) The relationship between glucose and cardiovascular events. Diabetes Care 22:233–240.PubMedCrossRefGoogle Scholar
  9. 9.
    Perez A, Wagner AM, Cabreras G, Gimenez G et al. (2000) Prevalence and phenotypic distribution of dyslipidemia in Type 1 diabetes mellitus. Effect of glycemic control. Arch Intern Med 160:2756–2762.PubMedCrossRefGoogle Scholar
  10. 10.
    Kelley DE, Simoneau JA (1994) Impaired free fatty acid utilization by skeletal muscle in non-insulin dependent diabetes mellitus. J Clin Invest 94:2349–2356.PubMedCrossRefGoogle Scholar
  11. 11.
    F. Xavier Pi-Sunyer (2004) Pathophysiology and long-term management of the metabolic syndrome. Obesity Res 12:Supplement December.Google Scholar
  12. 12.
    Haffner SM (2006) Risk constellations in patients with the metabolic syndrome: epidemiology, diagnosis, and treatment patterns. Am J Med 119(5 Suppl 1):S3–S9.PubMedCrossRefGoogle Scholar
  13. 13.
    Cohen RA (2005) Role of nitric oxide in diabetic complications. Am J Therapy 12:499–502. CrossRefGoogle Scholar
  14. 14.
    Schalkwijk CG and Stehouwer CDA (2005) Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clinical Sci 109:143–159. CrossRefGoogle Scholar
  15. 15.
    Oskarsson HJ, Hofmeyer TG (1997) Diabetic human platelets release a substance that inhibits platelet-mediated vasodilatation. Am J Physiol 273:H371–H379. PubMedGoogle Scholar
  16. 16.
    Tschoepe D, Driesch E, Schwippert B, Nieuwenhuis HK, Gries FA (1995) Exposure of adhesion molecules on activated platelets in patients with newly diagnosed IDDM is not normalized by near-normoglycaemia. Diabetes 44:890–894. PubMedCrossRefGoogle Scholar
  17. 17.
    Fleischhacker E, Esenabhalu VE, Spitaler M, Holzmann S, Skrabal F, Koidl B, Kostner GM, Graier WF (1999) Human diabetes is associated with hyperreactivity of vascular smooth muscle cells due to altered subcellular Ca2 distribution. Diabetes 48:1323–1330.PubMedCrossRefGoogle Scholar
  18. 18.
    Ford ES (1999) Body mass index, diabetes, and C-reactive protein among U.S. adults. Diabetes Care 22:1971–1977PubMedCrossRefGoogle Scholar
  19. 19.
    Koenig W, Sund M, Fröhlich M et al. (1999) C-reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men. Circulation 99:237–242.PubMedGoogle Scholar
  20. 20.
    Jude EB, Douglas JT, Anderson SG, Young MJ, Boulton AJM. (2002) Circulating cellular adhesion molecules ICAM-1, VCAM-1, P- and E-selectin in the prediction of cardiovascular disease in diabetes mellitus. Eur J Int Med May 185–189. Google Scholar
  21. 21.
    Akasaka T, Yoshida K, Hozumi T, Takagi T, Kaji S, Kawamoto T, Orioka S, Yoshikawa J. (1997) Retinopathy identifies marked restriction of coronary flow reserve in patients with diabetes mellitus. J Am Coll Cardiol 30(4):935–941.PubMedCrossRefGoogle Scholar
  22. 22.
    Ragosta M, Samady H, Isaacs RB, Gimple LW, Sarembock IJ, Powers ER. (2004) Coronary flow reserve abnormalities in patients with diabetes mellitus who have end-stage renal disease and normal epicardial coronary arteries. Am Heart J 147:1017–1023.PubMedCrossRefGoogle Scholar
  23. 23.
    Bagi Z, Koller A, and Kaley G. Superoxide-NO interaction decreases flow- and agonist-induced dilations of coronary arterioles in Type 2 diabetes mellitus Am J Physiol Heart Circ Physiol 285:H1404–H1410.Google Scholar
  24. 24.
    Bierhaus A, Marion A. Hofmann MA, Reinhard Ziegler R Nawroth PP. (1998) AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Res 37.586–600.PubMedCrossRefGoogle Scholar
  25. 25.
    Mehta JL, Rasouli N, Sinha AK, Molavi A. (2006) Review oxidative stress in diabetes: A mechanistic overview of its effects on atherogenesis and myocardial dysfunction. Int J Biochem Cell Biol 38:794–803. PubMedCrossRefGoogle Scholar
  26. 26.
    Feron O, Kelly RA. (2001) The caveolar paradox: Suppressing, inducing, and erminating enos signaling. Circulation Res 88:129–131.PubMedGoogle Scholar
  27. 27.
    Inoguchi T, Li P, Umeda F et al. (2000) High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49:1939–1945.PubMedCrossRefGoogle Scholar
  28. 28.
    Inoguchi T, Xia P, Kunisaki M, Higashi S, Feener EP, King GL (1994) Insulin’s effect on protein kinase C and diacylglycerol induced by diabetes and glucose in vascular tissues. Am J Physiol 267(3 Pt 1):E369–E379.PubMedGoogle Scholar
  29. 29.
    Swidan SZ, Montgomery PA. (1998) Effect of blood glucose concentrations on the development of chronic complications of diabetes mellitus. Pharmacotherapy 18:961–972.PubMedGoogle Scholar
  30. 30.
    Setter SM, Campbell K, Cahoon CJ. (2003) Biochemical pathways for microvascular complications of diabetes mellitus Annals Pharmacotherapy 37(12):1858–1866. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Francis Estrada
    • 1
  • John R. Buscombe
    • 1
  1. 1.Department of Nuclear MedicineRoyal Free HospitalLondonUK

Personalised recommendations