Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4911))

Abstract

Sequential behavior and sequence learning are essential to intelligence. Often the elements of sequences exhibit an internal structure that can elegantly be represented using relational atoms. Applying traditional sequential learning techniques to such relational sequences requires one either to ignore the internal structure or to live with a combinatorial explosion of the model complexity. This chapter briefly reviews relational sequence learning and describes several techniques tailored towards realizing this, such as local pattern mining techniques, (hidden) Markov models, conditional random fields, dynamic programming and reinforcement learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search toll. Journal of Molecular Biology 215(3), 403–410 (1990)

    Google Scholar 

  2. Bellman, D.P.: Dynamic Programming. Princeton University Press, Princeton (1957)

    Google Scholar 

  3. Blockeel, H., De Raedt, L.: Top-down Induction of First-order Logical Decision Trees. Artificial Intelligence 101(1–2), 285–297 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bruynooghe, M., De Raedt, L., Lee, S.D., Troncon, R.: Mining logical sequences. Technical report, Department of Computer Science, Katholieke Universiteit Leuven (forthcoming, 2007)

    Google Scholar 

  5. Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C.: A model of evolutionary change in proteins. In: Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, vol. 5, ch. 22 pp. 345–352. Nat. Biomedical Research Foundation (1978)

    Google Scholar 

  6. Dietterich, T., Ashenfelter, A., Bulatov, Y.: Training conditional random fields via gradient tree boosting. In: Proc. 21st International Conf. on Machine Learning, pp. 217–224. ACM Press, New York (2004)

    Google Scholar 

  7. Gorodkin, J., Heyer, L.J., Brunak, S., Stormo, G.D.: Displaying the information contents of structural RNA alignments: The structure logos. CABIOS 13(6), 583–586 (1997)

    Google Scholar 

  8. Gough, J., Karplus, K., Hughey, R., Chothia, C.: Assignment of homology to genome sequences using a library of hidden markov models that represent all proteins of known structure. JMB 313(4), 903–919 (2001)

    Article  Google Scholar 

  9. Greenberg, S.: Using unix: Collected traces of 168 users. Research Report 88/333/45, Department of Computer Science, University of Calgary, Calgary, Canada (1988)

    Google Scholar 

  10. Gutmann, B., Kersting, K.: Tildecrf: Conditional random fields for logical sequences. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 174–185. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Natl Acad. Sci. 89, 10915–10919 (1992)

    Article  Google Scholar 

  12. Horváth, T., Wrobel, S., Bohnebeck, U.: Relational Instance-Based learning with Lists and Terms. Machine Learning Journal 43(1/2), 53–80 (2001)

    Article  MATH  Google Scholar 

  13. Hubbard, T., Murzin, A., Brenner, S., Chotia, C.: SCOP: A structural classification of proteins database. NAR 27(1), 236–239 (1997)

    Article  Google Scholar 

  14. Karwath, A., Kersting, K.: Relational sequences alignments and logos. In: Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp. 290–304. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Kersting, K., De Raedt, L.: Logical Markov Decision Programs and the Convergence of Logical TD(λ). In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, pp. 180–197. Springer, Heidelberg (2004)

    Google Scholar 

  16. Kersting, K., De Raedt, L., Raiko, T.: Logical Hidden Markov Models. Journal of Artificial Intelligence Research (JAIR) 25, 425–456 (2006)

    Google Scholar 

  17. Kersting, K., Van Otterlo, M., De Raedt, L.: Bellman goes Relational. In: Greiner, R., Schuurmans, D. (eds.) Proceedings of the Twenty-First International Conference on Machine Learning (ICML 2004), Banff, Alberta, Canada, July 4–8, 2004, pp. 465–472 (2004)

    Google Scholar 

  18. Kersting, K., Raiko, T., Kramer, S., De Raedt, L.: Towards discovering structural signatures of protein folds based on logical hidden markov models. In: Proceedings of the Pacific Symposium on Biocomputing (PSB 2003), pp. 192–203 (2003)

    Google Scholar 

  19. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. 18th International Conf. on Machine Learning, pp. 282–289. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  20. Landwehr, N., De Raedt, L.: r-grams: Relational Grams. In: Proceedings of the Twentieth Joint International Conference on Artificial Intelligence (IJCAI 2007), AAAI Press, Menlo Park (2007)

    Google Scholar 

  21. Lee, S.D., De Raedt, L.: Mining Logical Sequences Using SeqLog. In: Meo, R., Lanzi, P.L., Klemettinen, M. (eds.) Database Support for Data Mining Applications. LNCS (LNAI), vol. 2682, Springer, Heidelberg (2004)

    Google Scholar 

  22. Lee, S.D., De Raedt, L.: Constraint based mining of first order sequences in seqlog. In: Meo, R., Lanzi, P.L., Klemettinen, M. (eds.) Database Support for Data Mining Applications. LNCS (LNAI), vol. 2682, pp. 154–173. Springer, Heidelberg (2004)

    Google Scholar 

  23. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

    Article  Google Scholar 

  24. Manning, C.H., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  25. Muggleton, S.H., De Raedt, L.: Inductive Logic Programming: Theory and Methods. Journal of Logic Programming 19(20), 629–679 (1994)

    Article  MathSciNet  Google Scholar 

  26. Needleman, S., Wunsch, C.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Bio. 48(3), 443–453 (1970)

    Article  Google Scholar 

  27. Nienhuys-Cheng, S.-H.: Distance between Herbrand interpretations: A measure for approximations to a target concept. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS, vol. 1297, pp. 250–260. Springer, Heidelberg (1997)

    Google Scholar 

  28. Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  29. Ramon, J.: Clustering and instance based learning in first order logic. PhD thesis, Department of Computer Science, K.U. Leuven, Leuven, Belgium (October 2002)

    Google Scholar 

  30. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Evol. Biol. 4(4), 406–425 (1987)

    Google Scholar 

  31. Semeraro, G., Esposito, F., Malerba, D.: Ideal Refinement of Datalog Programs. In: Proceedings of the 5th Intternational Workshop on Logic Programming Synthesis and Transformation (1995)

    Google Scholar 

  32. Slaney, J., Thiébaux, S.: Blocks World revisited. Artificial Intelligence Journal 125, 119–153 (2001)

    Article  MATH  Google Scholar 

  33. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology 147, 195–197 (1981)

    Article  Google Scholar 

  34. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  35. Tsitsiklis, J.N., Van Roy, B.: An analysis of temporal-difference learning with function approximation. IEEE Transactions of Automatic Control 42, 674–690 (1997)

    Article  MATH  Google Scholar 

  36. Turcotte, M., Muggleton, S.H., Sternberg, M.J.E.: The Effect of Relational Background Knowledge on Learning of Protein Three-Dimensional Fold Signatures. Machine Learning Journal 43(1/2), 81–95 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luc De Raedt Paolo Frasconi Kristian Kersting Stephen Muggleton

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kersting, K., De Raedt, L., Gutmann, B., Karwath, A., Landwehr, N. (2008). Relational Sequence Learning. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds) Probabilistic Inductive Logic Programming. Lecture Notes in Computer Science(), vol 4911. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78652-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78652-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78651-1

  • Online ISBN: 978-3-540-78652-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics