Advertisement

Basic Concepts of Knowledge-Based Image Understanding

  • R. Tadeusiewicz
  • P. S. Szczepaniak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4953)

Abstract

In the paper, the main paradigm of image understanding as well as possible way for practical machine realization in relatively simple situations is presented. The notion ’simple situations’ reflects more our humility with respect to the complication of human perception process than the form of objects to be recognized and interpreted. Crucial for our approach are formalization of human knowledge about class of images to be automatically interpreted and realization of cognitive resonance while the particular method put at work is the active contour approach.

Keywords

Image understanding machine learning active contours 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tadeusiewicz, R., Ogiela, M.R.: Medical Image Understanding Technology. Studies in Fuzziness and Soft Computing, vol. 156. Springer, Berlin (2004)zbMATHGoogle Scholar
  2. 2.
    Ogiela, L., Tadeusiewicz, R., Ogiela, M.R.: Cognitive Approach to Visual Data Interpretation in Medical Information and Recognition Systems. In: Zheng, N., Jiang, X., Lan, X. (eds.) IWICPAS 2006. LNCS, vol. 4153, pp. 244–250. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Ogiela, L., Tadeusiewicz, R., Ogiela, M.R.: Cognitive Computing in Intelligent Medical Pattern Recognition Systems. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) Intelligent Control and Automation. Lecture Notes in Control and Information Sciences, vol. 344, pp. 851–856. Springer, Berlin, Heidelberg, New York (2006)CrossRefGoogle Scholar
  4. 4.
    Ogiela, M.R., Tadeusiewicz, R., Ogiela, L.: Graph Image Language Techniques Supporting Radiological, Hand Image Interpretations. In: Computer Vision and Image Understanding, vol. 103/2, pp. 112–120. Elsevier, Amsterdam (2006)Google Scholar
  5. 5.
    Ogiela, M.R., Tadeusiewicz, R., Ogiela, L.: Image Languages in Intelligent Radiological Palm Diagnostics. Pattern Recognition 39/11, 2157–2165 (2006)CrossRefGoogle Scholar
  6. 6.
    Tadeusiewicz, R., Ogiela, M.R.: Why Automatic Understanding? In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 477–491. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic Active Contours. Int. Journal of Computer Vision 22(1), 61–79 (2000)CrossRefGoogle Scholar
  8. 8.
    Kass, M., Witkin, W., Terzopoulos, S.: Snakes: Active Contour Models. Int. Journal of Computer Vision 1(4), 321–333 (1988)CrossRefGoogle Scholar
  9. 9.
    Tomczyk, A.: Active Hypercontours and Contextual Classification. In: Proceedings of the 5th International Conference on Intelligent Systems Design and Applications – ISDA 2005, Wroclaw, Poland, pp. 256–261. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  10. 10.
    Tomczyk, A., Szczepaniak, P.S.: On the Relationship between Active Contours and Contextual Classification. In: Kurzyński, M., et al. (eds.) Computer Recognition Systems. Proceedings of the 4th Int. Conference on Computer Recognition Systems – CORES 2005, pp. 303–310. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Tomczyk, A., Szczepaniak, P.S.: Adaptive Potential Active Hypercontours. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 692–701. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Tomczyk, A., Szczepaniak, P.S.: Contribution of Active Contour Approach to Image Understanding. In: Proceedings of the IEEE International Workshop on Imaging Systems and Techniques – IST 2007, Krakow, Poland (2007), ISBN 1-4244-0965-9Google Scholar
  13. 13.
    Pedrycz, W., Loia, V.: P-FCM: A proximity-based fuzzy clustering. Fuzzy Sets and Systems 128, 21–41 (2004)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Tomczyk, A., Szczepaniak, P.S., Lis, B.: Generalized Multi-layer Kohonen Network and Its Application to Texture Recognition. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 760–767. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Lis, B., Szczepaniak, P.S., Tomczyk, A.: Multi-layer Kohonen Network and Texture Recognition. In: Grzegorzewski, P., Krawczak, M., Zadrony, S. (eds.) Soft Computing Tools, Techniques and Applications, Akademicka Oficyna Wydawnicza EXIT, Warszawa (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • R. Tadeusiewicz
    • 1
  • P. S. Szczepaniak
    • 2
  1. 1.AGH University of TechnologyKrakowPoland
  2. 2.Institute of Computer ScienceTechnical University of LodzLodzPoland

Personalised recommendations