Skip to main content

Some Methods of Infinite Dimensional Analysis in Hydrodynamics: An Introduction

  • Chapter
SPDE in Hydrodynamic: Recent Progress and Prospects

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1942))

In these lectures we shall concentrate on certain mathematical results concerning the case of deterministic Euler and stochastic Navier-Stokes equations for incompressible fluids. For general references we refer to [Fri95], [Tem83], [CF88], [VF88], [VKF79], [Lio96], [MP94], [NPe01], [Che96b], [Che98], [Che04], [CK04a], [Con95], [Con94], [Con01a], [Con01b], [FMRT01], [LR02], [MB02] [Tem84] and [Bir60] and for a discussion of challenging open problems see, e.g. [Fef06], [Can00], [Can04], [CF03], [Cho94], [Con95], [Con01a], [FMRT01], [Gal01], [ES00a], [Hey90], [Ros06] and [FMB03]. We shall concentrate particularly on the study of invariant measures associated with the above equations for fluids. On the one hand, this follows an analogy with the statistical mechanical approach to classical particle systems and ergodic theory, see, e.g. [Min00], [Rue69]. On the other hand, it follows Kolmogorov's suggestion, see e.g. [ER85], of adding small stochastic perturbations (“noise”) in classical dynamical systems, so to construct invariant measures and then study what happens when removing the noise.

The content of our lecture is as follows: in Section 2 we shall study the deterministic Euler equation and construct certain natural invariant measures for it. We also relate this analysis with the study of a certain Hamiltonian system describing vortices (“vortex models”). In Section 3 we shall study the stochastic Navier-Stokes equation with Gaussian space-time white noise and its invariant measure. We also provide brief comments and bibliographical references concerning recent work in directions which are complementary to those described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Albeverio and Ya. Belopolskaya. Probabilistic approach to hydrodynamic equations. In Probabilistic methods in fluids, pages 1–21. World Sci. Publ., River Edge, NJ, Swansea, UK, April 2002.

    Google Scholar 

  2. S. Albeverio and Ya. Belopolskaya. Probabilistic approach to systems of nonlinear PDEs and vanishing viscosity method. Markov Process. Relat. Fields, 12(1):59–94, 2006.

    MATH  MathSciNet  Google Scholar 

  3. S. Albeverio, V. Barbu, and B. Ferrario. Uniqueness of the generators of the 2D Euler and Navier-Stokes flows. Stochastic Processes Appl., in press, available online 27 December 2007.

    Google Scholar 

  4. K. Aoki, C. Bardos, F. Golse, and Y. Sone. Derivation of hydrodynamic limits from either the Liouville equation or kinetic models: study of an example. Sūrikaisekikenkyūsho Kōkyūroku, (1146):154–181, 2000. Mathematical analysis of liquids and gases (Japanese) (Kyoto, 1999).

    Google Scholar 

  5. S. Albeverio, Ph. Blanchard, and R. Høegh-Krohn. Reduction of nonlinear problems to Schrödinger or heat equations: formation of Kepler orbits, singular solutions for hydrodynamical equations. In S. Albeverio et al., eds, Stochastic aspects of classical and quantum systems (Marseille, 1983), volume 1109 of Lecture Notes in Math., pages 189–206. Springer, Berlin, 1985.

    Chapter  Google Scholar 

  6. S. Albeverio, V. Barbu, and M. Röckner. in preparation.

    Google Scholar 

  7. S. Albeverio, Z. Brzeźniak, and J. L. Wu. Stochastic Navier–Stokes equations driven by non Gaussian white noise. in preparation.

    Google Scholar 

  8. S. Albeverio and A. B. Cruzeiro. Global flows with invariant (Gibbs) measures for Euler and Navier–Stokes two-dimensional fluids. Comm. Math. Phys., 129(3):431–444, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Albeverio and B. Ferrario. Invariant measures of Lévy-Khinchine type for 2D fluids. In I. M. Davies, N. Jacob, A. Truman, O. Hassan, K. Morgan, and N. P. Weatherill, editors, Probabilistic methods in fluids, pages 130–143, Swansea, UK, April 2002. University of Wales, World Sci. Publ., River Edge, NJ.

    Google Scholar 

  10. S. Albeverio and B. Ferrario. Uniqueness results for the generators of the two-dimensional Euler and Navier–Stokes flows. The case of Gaussian invariant measures. J. Funct. Anal., 193(1):77–93, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Albeverio and B. Ferrario. 2D vortex motion of an incompressible ideal fluid: the Koopman-von Neumann approach. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6(2):155–165, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Albeverio and B. Ferrario. Invariant Gibbs measures for the 2D vortex motion of fluids. S. Albeverio et al. (eds.), Recent developments in stochastic analysis and related topics. Proceedings of the first Sino-German conference on stochastic analysis (a satellite conference of ICM 2002), Beijing, China, 29 August – 3 September 2002. River Edge, NJ: World Scientific. 31–44, 2004.

    Google Scholar 

  13. S. Albeverio and B. Ferrario. Uniqueness of solutions of the stochastic Navier–Stokes equation with invariant measure given by the enstrophy. Ann. Probab., 32(2):1632–1649, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Albeverio, B. Ferrario, and M. W. Yoshida. On the essential self-adjointness of Wick powers of relativistic fields and of fields unitary equivalent to random fields. Acta Appl. Math., 80(3):309–334, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Albeverio, H. Gottschalk and M. W. Yoshida. Systems of classical particles in the grand canonical ensemble, scaling limits and quantum field theory. Rev. Math. Phys. 17(2):175–226, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Albeverio and R. Høegh-Krohn. Uniqueness of the physical vacuum and the Wightman functions in the infinite volume limit for some non polynomial interactions. Comm. Math. Phys., 30:171–200, 1973.

    Article  MathSciNet  Google Scholar 

  17. S. Albeverio and R. Høegh-Krohn. Stochastic flows with stationary distribution for two-dimensional inviscid fluids. Stochastic Process. Appl., 31(1):1–31, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  18. S. Albeverio, R. Høegh-Krohn, J. E. Fenstad and T. Lindstrøm. Nonstandard methods in stochastic analysis and mathematical physics. Pure and Applied Mathematics, 122. Academic Press, Inc., Orlando, FL, 1986.

    MATH  Google Scholar 

  19. S. Albeverio, R. Høegh-Krohn, and D. Merlini. Euler flows, associated generalized random fields and Coulomb systems. In Infinite-dimensional analysis and stochastic processes (Bielefeld, 1983), volume 124 of Res. Notes in Math., pages 216–244. Pitman, Boston, MA, 1985.

    Google Scholar 

  20. V. I. Arnol′d and B. A. Khesin. Topological methods in hydrodynamics. Springer-Verlag, New York, 1998.

    Google Scholar 

  21. S. Albeverio, Yu. G. Kondratiev, and M. Röckner. An approximate criterium of essential selfadjointness of Dirichlet operators. Potential Anal., 1(3):307–317, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  22. S. Albeverio, Yu. G. Kondratiev, and M. Röckner. Dirichlet operators via stochastic analysis. J. Funct. Anal., 128(1):102–138, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  23. S. Albeverio, Yu. G. Kondratiev, and M. Röckner. Analysis and geometry on configuration spaces. J. Funct. Anal., 154(2):444–500, 1998.

    Article  Google Scholar 

  24. S. Albeverio, Yu. G. Kondratiev, and M. Röckner. Analysis and geometry on configuration spaces: the Gibbsian case. J. Funct. Anal., 157(1):242–291, 1998.

    Article  Google Scholar 

  25. S. Albeverio. Introduction to the theory of Dirichlet forms and applications. in S. Albeverio, W. Schachermeyer, M. Talagrand, St Flour Lectures on Probability and Statistics. LN Math. 1816, Springer, Berlin (2003), 2000.

    Google Scholar 

  26. S. Albeverio, S. Liang, and B. Zegarlinski. Remark on the integration by parts formula for the φ3 4-quantum field model. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9(1):149–154, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  27. S. Albeverio, S. A. Molchanov, and D. Surgailis. Stratified structure of the Universe and Burgers’ equation—a probabilistic approach. Probab. Theory Related Fields, 100(4):457–484, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  28. S. Albeverio and M. Röckner. Dirichlet form methods for uniqueness of martingale problems and applications. In Stochastic analysis (Ithaca, NY, 1993), volume 57 of Proc. Sympos. Pure Math., pages 513–528. Amer. Math. Soc., Providence, RI, 1995.

    Google Scholar 

  29. S. Albeverio and F. Russo. Stochastic partial differential equations, infinite dimensional stochastic processes and random fields: A short introduction. L. Vazquez et al. (eds.), Proceedings of the Euroconference on nonlinear Klein-Gordon and Schrödinger systems: theory and applications, Madrid, Spain, September 25–30, 1995. Singapore: World Scientific. 68-86, 1996.

    Google Scholar 

  30. S. Albeverio, M. Ribeiro de Faria, and R. Høegh-Krohn. Stationary measures for the periodic Euler flow in two dimensions. J. Statist. Phys., 20(6):585–595, 1979.

    Article  MathSciNet  Google Scholar 

  31. V. I. Arnold, S. F. Shandarin, and Ya. B. Zeldovich. The large scale structure of the Universe. I. General properties. One- and two-dimensional models. Geophys. Astrophys. Fluid Dyn., 20:111–130, 1982.

    Article  MATH  Google Scholar 

  32. M. Ben-Artzi. Global solutions of two-dimensional Navier–Stokes and Euler equations. Arch. Rational Mech. Anal., 128(4):329–358, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  33. V. Barbu. Optimal control of Navier–Stokes equations with periodic inputs. Nonlinear Anal., Theory Methods Appl., 31(1–2):15–31, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  34. Z. Brzeźniak, M. Capiński, and F. Flandoli. Stochastic Navier–Stokes equations with multiplicative noise. Stochastic Anal. Appl., 10(5):523–532, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  35. L. Bertini, N. Cancrini, and G. Jona-Lasinio. The stochastic Burgers equation. Comm.Math.Phys., 165(2):211, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  36. V.S. Borkar, R.T. Chari, and S.K. Mitter. Stochastic quantization of field theory in finite and infinite volume. J. Funct. Anal., 81(1): 184–206, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  37. V. Barbu, G. Da Prato, and A. Debussche. Essential m-dissipativity of Kolmogorov operators corresponding to periodic 2D-Navier–Stokes equations. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 15(1):29–38, 2004.

    MATH  MathSciNet  Google Scholar 

  38. Yu. Yu. Bakhtin, E. I. Dinaburg, and Ya. Sinai. On solutions with infinite energy and enstrophy of the Navier–Stokes system. Uspekhi Mat. Nauk, 59(6(360)):55–72, 2004.

    Google Scholar 

  39. H. Bessaih. Martingale solutions for stochastic Euler equations. Stochastic Anal. Appl., 17(5):713–725, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  40. C. Boldrighini and S. Frigio. Equilibrium states for a plane incompressible perfect fluid. Comm. Math. Phys., 72(1):55–76, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  41. H. Bessaih and F. Flandoli. 2-D Euler equation perturbed by noise. Nonlinear Differential Equations Appl., 6(1):35–54, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  42. H. Bessaih and F. Flandoli. Weak Attractor for a Dissipative Euler Equation. Journal of Dynamics and Differential Equations, 12(4):713–732, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  43. C. Boldrighini and S. Frigio. Erratum: “Equilibrium states for a plane incompressible perfect fluid”. Comm. Math. Phys., 78(2):303, 1980/81.

    Article  MathSciNet  Google Scholar 

  44. B. Busnello, F. Flandoli, and M. Romito. A probabilistic representation for the vorticity of a three-dimensional viscous fluid and for general systems of parabolic equations. Proc. Edinb. Math. Soc., II. Ser., 48(2):295–336, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  45. H. A. Biagioni and T. Gramchev. On the 2D Navier–Stokes equation with singular initial data and forcing term. Mat. Contemp., 10:1–20, 1996.

    MATH  MathSciNet  Google Scholar 

  46. G. Birkhoff. Hydrodynamics: A study in logic, fact and similitude. Revised ed. Princeton Univ. Press, Princeton, N.J., 1960.

    MATH  Google Scholar 

  47. J. Bricmont, A. Kupiainen, and R. Lefevere. Ergodicity of the 2D Navier–Stokes equations with random forcing. Comm. Math. Phys., 224(1):65–81, 2001. Dedicated to Joel L. Lebowitz.

    Article  MATH  MathSciNet  Google Scholar 

  48. J. Bergh and J. Löfström. Interpolation spaces. An introduction. Springer-Verlag, Berlin, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223.

    Google Scholar 

  49. Z. Brzeźniak and Y. Li. Asymptotic behaviour of solutions to the 2D stochastic Navier–Stokes equations in unbounded domains – new developments. Albeverio, S. et al. eds, Recent developments in stochastic analysis and related topics. Proceedings of the first Sino-German conference on stochastic analysis (a satellite conference of ICM 2002), Beijing, China, 29 August – 3 September 2002. River Edge, NJ: World Scientific. 78–111, 2004.

    Google Scholar 

  50. V. Betz, J. Lörinczi, and H. Spohn. Gibbs measures on Brownian paths: theory and applications. J.-D. Deuschel et al. (eds.), Interacting stochastic systems. Berlin: Springer. 75–102, 2005.

    Chapter  Google Scholar 

  51. Z. Brzeźniak and S. Peszat. Stochastic two dimensional Euler equations. Ann. Probab., 29(4):1796–1832, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  52. V. I. Bogachev and M. Röckner. Elliptic equations for measures on infinite dimensional spaces and applications. Probab. Theory Relat. Fields, 120(4):445–496, 2001.

    Article  MATH  Google Scholar 

  53. Y. Brenier. Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Commun. Pure Appl. Math., 52(4):411–452, 1999.

    Article  MathSciNet  Google Scholar 

  54. S. Benachour, B. Roynette and P. Vallois. Branching process associated with 2d-Navier Stokes equation. Rev. Mat. Iberoamericana 17(2):331–373, 2001.

    MATH  MathSciNet  Google Scholar 

  55. A. Bensoussan and R. Temam. Équations stochastiques du type Navier–Stokes. J. Functional Analysis, 13:195–222, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  56. B. Busnello. A probabilistic approach to the two-dimensional Navier–Stokes equations. Ann. Probab., 27(4):1750–1780, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  57. R. E. Caflisch. Mathematical analysis of vortex dynamics. Mathematical aspects of vortex dynamics (Leesburg, VA, 1988), 1–24, SIAM, Philadelphia, PA, 1989.

    Google Scholar 

  58. M. Cannone. Advances in mathematical fluid mechanics (J. Malek, J. Necas, M. Rokyta): Viscous flows in Besov spaces. pages 1–34, 2000.

    Google Scholar 

  59. M. Cannone. Harmonic analysis tools for solving the incompressible Navier–Stokes equations. Handbook of mathematical fluid dynamics, 3:161–244, 2004.

    Article  MathSciNet  Google Scholar 

  60. T. Caraballo. The long-time behaviour of stochastic 2D-Navier–Stokes equations. Davies, I. M. (ed.) et al., Probabilistic methods in fluids. Proceedings of the Swansea 2002 workshop, Wales, UK, April 14–19, 2002. Singapore: World Scientific. 70–83, 2003.

    Google Scholar 

  61. M. Capiński and N. J. Cutland. Nonstandard methods for stochastic fluid mechanics, volume 27 of Series on Advances in Mathematics for Applied Sciences. World Scientific Publishing Co. Inc., River Edge, NJ, 1995.

    MATH  Google Scholar 

  62. M. Capiński and N. J. Cutland. Stochastic Euler equations on the torus. Ann. Appl. Probab., 9(3):688–705, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  63. N. V. Chemetov and F. Cipriano. The 2D Euler equations and the statistical transport equations. Commun. Math. Phys., 267:543–558, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  64. S. Caprino and S. De Gregorio. On the statistical solutions of the two-dimensional, periodic Euler equation. Math. Methods Appl. Sci., 7(1):55–73, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  65. N. J. Cutland and B. Enright. Stochastic nonhomogeneous incomressible Navier–Stokes equations. J. Diff. Eq., 228:140–170, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  66. P. Constantin and C. Foias. Navier–Stokes equations. Chicago Lectures in Mathematics. Chicago, IL etc.: University of Chicago Press. ix, 190 p., 1988.

    Google Scholar 

  67. M. Cannone and S. Friedlander. Navier: blow up and collapse. Notices AMS, 50(1):7–13, 2003.

    MATH  MathSciNet  Google Scholar 

  68. A.-B. Cruzeiro, F. Flandoli, and P. Malliavin. Brownian motion on volume preserving diffeomorphisms group and existence of global solutions of 2D stochastic Euler equation. J. Funct. Anal., 242(1):304–326, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  69. P. Constantin, C. Foiaş, O. Manley, and R. Temam. Connexion entre la théorie mathématique des équations de Navier–Stokes et la théorie conventionnelle de la turbulence. C.R.Acad.Sci.Paris Ser:I.Math, 297(11):599–602, 1983.

    MATH  MathSciNet  Google Scholar 

  70. M. Capiński and D. Gatarek. Stochastic equations in Hilbert space with application to Navier–Stokes equations in any dimension. J. Funct. Anal., 126(1):26–35, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  71. A. B. Cruzeiro and Z. Haba. Invariant measure for a wave equation on a Riemannian manifold. Stochastic differential and difference equations (Györ, 1996), 35–41, Progr. Systems Control Theory, 23, Birkhäuser Boston, Boston, MA, 1997.

    Google Scholar 

  72. M. H. Chang. Large deviation for Navier–Stokes equation with small stochastic perturbation. Applied Mathematics and Computation, 1996.

    Google Scholar 

  73. J.-Y. Chemin. A remark on the inviscid limit for two-dimensional incompressible fluids. Commun. Partial Differ. Equations, 21(11–12): 1771–1779, 1996.

    MATH  MathSciNet  Google Scholar 

  74. J.-Y. Chemin. About Navier–Stokes system. Publication du Laboratoire d’Analyse Numérique R 96023, 1996.

    Google Scholar 

  75. J.-Y. Chemin. Perfect incompressible fluids, volume 14 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York, 1998. Translated from the 1995 French original by I. Gallagher and D. Iftimie.

    Google Scholar 

  76. J.-Y. Chemin. The incompressible Navier–Stokes system seventy years after Jean Leray. (Le système de Navier–Stokes incompressible soixante dix ans après Jean Leray.). Guillopé, L. (ed.) et al., Proceedings of the colloquium dedicated to the memory of Jean Leray, Nantes, France, June 17–18, 2002. Paris: Société Mathématique de France. Séminaires et Congrès 9, 99–123, 2004.

    Google Scholar 

  77. P. L. Chow. Stochastic partial differential equations in turbulence related problems. In Probabilistic analysis and related topics, Vol. 1, pages 1–43. Academic Press, New York, 1978.

    Google Scholar 

  78. A. J. Chorin. Vorticity and turbulence. Applied Mathematical Sciences, 103, 1994.

    Google Scholar 

  79. F. Cipriano. The two-dimensional Euler equation: a statistical study. Comm. Math. Phys., 201(1):139–154, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  80. M. Cannone and G. Karch. Smooth or singular solutions to the Navier–Stokes system? J. Differ. Equations, 197(2):247–274, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  81. N. J. Cutland and H. J. Keisler. Global attractors for 3-dimensional stochastic Navier–Stokes equations. J. Dyn. Differ. Equations, 16(1): 205–266, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  82. E. Caglioti, P.-L. Lions, C. Marchioro, and M. Pulvirenti. A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description. Comm. Math. Phys., (143):501–525, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  83. T. Clopeau, A. Mikelić, and R. Robert. On the vanishing viscosity limit for the 2D incompressible Navier–Stokes equations with the friction type boundary conditions. Nonlinearity, 11(6):1625–1636, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  84. P. Constantin. Geometric statistic in turbulence. SIAM Rev. 36(1):73–98, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  85. P. Constantin. A few results and open problems regarding incompressible fluids. Notices AMS, 42:658–663, 1995.

    MATH  MathSciNet  Google Scholar 

  86. P. Constantin. Some Open Problems and Research Directions in the Mathematical Study of Fluid Dynamics, volume 47 of Mathematics unlimited. Springer, Berlin, 2001.

    Google Scholar 

  87. P. Constantin. Three lectures on mathematical fluid mechanics. Robinson, James C. (ed.) et al., From finite to infinite dimensional dynamical systems. Proceedings of the NATO advanced study institute, Cambridge, UK, August 21-September 1, 1995. Dordrecht: Kluwer Academic Publishers. NATO Sci. Ser. II, Math. Phys. Chem. 19, 145–175, 2001.

    Google Scholar 

  88. A. B. Cruzeiro. Invariant measures for Euler and Navier–Stokes systems. In stochastic analysis, path integration and dynamics (Warwick, 1987). Pitman Res. Notes Math. Ser., 200:73–82, 1989.

    MathSciNet  Google Scholar 

  89. A. B. Cruzeiro. Solutions et mesures invariantes pour des équations du type Navier–Stokes. Expo.Math (7):73–82, 1989.

    MATH  MathSciNet  Google Scholar 

  90. N. J. Cutland. Stochastic Navier–Stokes equations: Loeb space techniques and attractors. Davies, I. M. (ed.) et al., Probabilistic methods in fluids. Proceedings of the Swansea 2002 workshop, Wales, UK, April 14–19, 2002. Singapore: World Scientific. 97–114, 2003.

    Google Scholar 

  91. A. Debussche. The 2D-Navier–Stokes equations perturbed by a delta correlated noise. In I. M. Davies, N. Jacob, A. Truman, O. Hassan, K. Morgan, and N. P. Weatherill, editors, Probabilistic methods in fluids, pages 115–129, Swansea, UK, April 2002. University of Wales, World Sci. Publ., River Edge, NJ.

    Google Scholar 

  92. Charles R. Doering and J. D. Gibbon. Applied analysis of the Navier–Stokes equations. Cambridge Texts in Applied Mathematics. Cambridge: Cambridge Univ. Press. xiii, 217 p., 1995.

    Google Scholar 

  93. D. Dürr and M. Pulvirenti. On the vortex flow in bounded domains. Comm. Math. Phys., 85(2):265–273, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  94. G. Da Prato. Kolmogorov equations for stochastic PDEs. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser Verlag, Basel, 2004.

    MATH  Google Scholar 

  95. G. Da Prato and A. Debussche. Maximal dissipativity of the Dirichlet operator to the Burgers equation. CMS Conf. Proc., 28, Amer. Math. Soc., pages 85–98, 1999.

    Google Scholar 

  96. G. Da Prato and A. Debussche. Two-dimensional Navier–Stokes equations driven by a space-time white noise. J. Funct. Anal., 196(1): 180–210, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  97. G. Da Prato and A. Debussche. Ergodicity for the 3D stochastic Navier–Stokes equations. J.Math.Pures.Appl., 82(8):877–947, 2003.

    MATH  MathSciNet  Google Scholar 

  98. G. Da Prato and A. Debussche. m-dissipativity of Kolmogorov operators corresponding to Burgers equations with space-time white noise. Potential Anal., 26(1):31–55, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  99. G. Da Prato, A. Debussche and L. Tubaro. Coupling for some partial differential equations driven by white noise. Stoch. Proc. Appl. 115(8): 1384–1407, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  100. G. Da Prato, A. Debussche, and R. Temam. Stochastic Burgers’ equation. NoDEA, Nonlinear Differ. Equ. Appl., 1(4):389–402, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  101. G. Da Prato and L. Tubaro. Selfadjointness of some infinite-dimensional elliptic operators and application to stochastic quantization. Probab. Theory Relat. Fields, 118(1):131–145, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  102. G. Da Prato and L. Tubaro. An introduction to the 2D renormalization. preprint, 2005.

    Google Scholar 

  103. G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions, volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1992.

    MATH  Google Scholar 

  104. G. Dore and A. Venni. On the closedness of the sum of two closed operators. Math. Z., 196(2):189–201, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  105. W. E. Selected problems in materials science. Engquist, Björn (ed.) et al., Mathematics unlimited – 2001 and beyond. Berlin: Springer. 407–432, 2001.

    Google Scholar 

  106. A. Eberle. Uniqueness and non-uniqueness of semigroups generated by singular diffusion operators, volume 1718 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1999.

    MATH  Google Scholar 

  107. D. G. Ebin. A concise presentation of the Euler equations of hydrodynamics. Comm. Partial Differential Equations, 9(6):539–559, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  108. W. E. Weinan, K. Khanin, A. Mazel, and Ya. Sinai. Invariant measures for Burgers equation with stochastic forcing. Ann. of Math., 151(3):877–960, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  109. W. E. Weinan, J. C. Mattingly, and Ya. Sinai. Gibbsian dynamics and ergodicity for the stochastically forced Navier–Stokes equation. Comm. Math. Phys., 224(1):83–106, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  110. J.-P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors. Rev. Modern Phys., 57(3, part 1):617–656, 1985.

    Google Scholar 

  111. W. E. Weinan and Ya. Sinai. New results on mathematical and statistical hydrodynamics. Russian Math. Surveys, 55(4):635–666, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  112. W. E. Weinan and Ya. Sinai. Recent results on mathematical and statistical hydrodynamics. Russ. Math. Surv., 55(4):635–666, 2000.

    Article  MATH  Google Scholar 

  113. C. L. Fefferman. Existence and smoothness of the Navier–Stokes equation. In The millennium prize problems, pages 57–67. Clay Math. Inst., Cambridge, MA, 2006.

    Google Scholar 

  114. B. Ferrario. Ergodic results for stochastic Navier–Stokes equation. Stochastics Stochastics Rep., 60(3-4):271–288, 1997.

    MATH  MathSciNet  Google Scholar 

  115. B. Ferrario. The Bénard problem with random perturbations: Dissipativity and invariant measures. NoDEA, Nonlinear Differ. Equ. Appl., 4(1):101–121, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  116. B. Ferrario. Stochastic Navier–Stokes equations: analysis of the noise to have a unique invariant measure. Ann. Mat. Pura Appl. (4), 177:331–347, 1999.

    Article  MathSciNet  Google Scholar 

  117. B. Ferrario. Pathwise regularity of nonlinear Itô equations: Application to a stochastic Navier–Stokes equation. Stochastic Anal. Appl., 19(1):135–150, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  118. B. Ferrario. Uniqueness result for the 2D Navier–Stokes equation with additive noise. Stoch. Stoch. Rep., 75(6):435–442, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  119. B. Ferrario. On some problems of regularity in two-dimensional stochastic hydrodynamics. G. Da Prato et al. (eds.), Stochastic partial differential equations and applications – VII. Papers of the 7th meeting, Levico, Terme, Italy, January 5–10, 2004. Boca Raton, FL: Chapman & Hall/CRC. Lecture Notes in Pure and Applied Mathematics 245, 97–103, 2006.

    Google Scholar 

  120. F. Flandoli and M. Gubinelli. Random currents and probabilistic models of vortex filaments. Seminar on Stochastic Analysis, Random Fields and Applications IV, p. 129–139, Progr. Probab., 58, Birkhäuser, Basel, 2004.

    Google Scholar 

  121. F. Flandoli and M. Gubinelli. Statistics of a vortex filament model. Electron. J. Probab. 10 (25):865–900, 2005 (electronic).

    MathSciNet  Google Scholar 

  122. F. Flandoli and D. Gatarek. Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Relat. Fields, 102(3):367–391, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  123. F. Flandoli and F. Gozzi. Kolmogorov equation associated to a stochastic Navier–Stokes equation. J. Funct. Anal., 160(1):312–336, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  124. F. Flandoli, M. Gubinelli, M. Giacquinta, and V. M. Tortorelli. Stochastic currents. Stoch. Proc. Appl., 115:1583–1601, 2005.

    Article  MATH  Google Scholar 

  125. F. Flandoli. An introduction to 3D stochastic fluid dynamics. These Proceedings.

    Google Scholar 

  126. F. Flandoli. Dissipativity and invariant measures for stochastic Navier–Stokes equations. NoDEA Nonlinear Differential Equations Appl., 1(4):403–423, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  127. F. Flandoli. On a probabilistic description of small scale structures in 3D fluids. Annales Inst. Henri Poincaré, Probab. and Stat, 38: 207–228, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  128. F. Flandoli. Some remarks on a statistical theory of turbulent flows. Davies, I. M. (ed.) et al., Probabilistic methods in fluids. Proceedings of the Swansea 2002 workshop, Wales, UK, April 14–19, 2002. Singapore: World Scientific. 144–160, 2003.

    Google Scholar 

  129. F. Flandoli and B. Maslowski. Ergodicity of the 2-D Navier–Stokes equation under random perturbations. Comm. Math. Phys., 172(1):119–141, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  130. U. Frisch, T. Matsumoto, and J. Bec. Singularities of Euler flow? Not out of the blue! J. Stat. Phys., 113(5–6):761–781, 2003.

    MathSciNet  Google Scholar 

  131. C. Foias, O. P. Manley, R. Rosa, and R. Temam. Navier–Stokes Equations and Turbulence. Encyclopedia of Mathematics and its Applications, 83, 2001.

    Google Scholar 

  132. J. Fröhlich and D. Ruelle. Statistical mechanics of vortices in an inviscid two-dimensional fluid. Comm. Math. Phys., 87(1):1–36, 1983.

    Article  Google Scholar 

  133. F. Flandoli and M. Romito. Statistically stationary solutions to the 3-D Navier–Stokes equation do not show singularities. Electron. J. Probab., 6(5):15pp, 2001.

    MathSciNet  Google Scholar 

  134. F. Flandoli and M. Romito. Probabilistic analysis of singularities for the 3D Navier–Stokes equations. Mathematica Bohemica, 127(2): 211–218, 2002.

    MATH  MathSciNet  Google Scholar 

  135. M. Freidlin. Probabilistic approach to the small viscosity asymptotics for Navier–Stokes equations. Nonlinear Anal., Theory Methods Appl., 30(7):4069–4076, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  136. U. Frisch. Turbulence. The legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  137. J. Fröhlich and E. Seiler. The massive Thirring-Schwinger model (QED2): convergence of perturbation theory and particle structure. Helv. Phys. Acta, 49(6):889–924, 1976.

    MathSciNet  Google Scholar 

  138. H. Fujita Yashima. Équations de Navier–Stokes stochastiques non homogènes et applications. Scuola Normale Superiore, Pisa, 1992.

    Google Scholar 

  139. G. Gallavotti. Problèmes ergodiques de la mécanique classique. Enseignement du troisième cycle de la Physique en Suisse Romande. École Polytechnique Fédérale, Lausanne, 1976.

    Google Scholar 

  140. G. Gallavotti. Foundations of Fluid Dynamics. Springer, Berlin, 2001.

    MATH  Google Scholar 

  141. K. Goodrich, K. Gustafson, and B. Misra. On converse to Koopman’s lemma. Phys. A, 102(2):379–388, 1980.

    Article  MathSciNet  Google Scholar 

  142. H. M. Glaz. Two attempts at modeling two-dimensional turbulence. In Turbulence Seminar (Univ. Calif., Berkeley, Calif., 1976/1977), pages 135–155. Lecture Notes in Math., Vol. 615. Springer, Berlin, 1977.

    Google Scholar 

  143. H. M. Glaz. Statistical behavior and coherent structures in two-dimensional inviscid turbulence. SIAM J. Appl. Math., 41(3):459–479, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  144. Yu. E. Gliklikh. Deterministic viscous hydrodynamics via stochastic analysis on groups of diffeomorphisms. Methods Funct. Anal. Topol., 9(2):146–153, 2003.

    MATH  MathSciNet  Google Scholar 

  145. F. Gozzi, S. S. Sritharan, and A. Świech. Viscosity solutions of dynamic-programming equations for the optimal control of the two-dimensional Navier–Stokes equations. Arch. Ration. Mech. Anal., 163(4):295–327, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  146. Z. Haba. Ergodicity and invariant measures of some randomly perturbed classical fields. J. Math. Phys., 32(12):3463–3472, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  147. J. G. Heywood. Open problems in the theory of the Navier–Stokes equations for viscous incompressible flow. The Navier–Stokes equations theory and numerical methods, Proc. Conf., Oberwolfach/FRG 1988, Lect. Notes Math. 1431, 1-22 (1990)., 1990.

    Google Scholar 

  148. T. Hida, H.-H. Kuo, J. Potthoff, and L. Streit. White noise, An infinite-dimensional calculus, volume 253 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1993.

    MATH  Google Scholar 

  149. M. Hairer and J. C. Mattingly. Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing. Ann. of Math. (2), 164(3):993–1032, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  150. E. Hopf. Statistical hydrodynamics and functional calculus. J. Rat. Mech. Anal., 1:87–123, 1952.

    MathSciNet  Google Scholar 

  151. G. Jona-Lasinio and P. K. Mitter. On the stochastic quantization of field theory. Commun. Math. Phys., 101:409–436, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  152. T. Kato. On classical solutions of the two-dimensional nonstationary Euler equation. Arch. Rational Mech. Anal., 25:188–200, 1967.

    Article  MATH  MathSciNet  Google Scholar 

  153. J. U. Kim. On the stochastic Euler equations in a two-dimensional domain. SIAM J. Math. Anal., 33(5):1211–1227 (electronic), 2002.

    Article  MATH  MathSciNet  Google Scholar 

  154. R. H. Kraichnan and D. Montgomery. Two-dimensional turbulence. Rep. Progr. Phys., 43(5):547–619, 1980.

    Article  MathSciNet  Google Scholar 

  155. P. Kotelenez. A stochastic Navier–Stokes equation for the vorticity of a two-dimensional fluid. Ann. Appl. Probab., 5(4):1126–1160, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  156. H. Kawabi and M. Röckner. Essential self-adjointness of Dirichlet operators on a path space with Gibbs measures via an SPDE approach. J. Funct. Anal., 242(2):486–518, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  157. S. Kuksin and A. Shirikyan. Ergodicity for the randomly forced 2D Navier–Stokes equations. Math. Phys. Anal. Geom., 4(2):147–195, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  158. H. Koch and D. Tataru. Well-posedness for the Navier–Stokes equations. Adv. Math., 157(1):22–35, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  159. S. B. Kuksin. The Eulerian limit for 2D statistical hydrodynamics. J. Stat. Phys., 115:469–492, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  160. S. B. Kuksin. Randomly forced nonlinear PDEs and statistical hydrodynamics in 2 space dimensions. European Mathematical society (EMS), 2006.

    Google Scholar 

  161. H. H. Kuo. Gaussian measures in Banach spaces. Springer-Verlag, Berlin, 1975. Lecture Notes in Mathematics, Vol. 463.

    MATH  Google Scholar 

  162. P.-L. Lions. Mathematical Topics in Fluid Mechanics, volume 1, Incompressible Models. Science Publ., Oxford, 1996.

    MATH  Google Scholar 

  163. P.-L. Lions. On Euler equations and statistical physics. Cattedra Galileiana. [Galileo Chair]. Scuola Normale Superiore, Classe di Scienze, Pisa, 1998.

    Google Scholar 

  164. Y. Le Jan and A. S. Sznitman. Stochastic cascades and 3-dimensional Navier–Stokes equations. Probab. Theory Relat. Fields, 109(3): 343–366, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  165. P.-L. Lions and N. Masmoudi. From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II. Arch. Ration. Mech. Anal., 158(3):173–193, 195–211, 2001.

    Google Scholar 

  166. J. A. León, D. Nualart, and R. Pettersson. The stochastic Burgers equation: finite moments and smoothness of the density. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 3(3):363–385, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  167. N. N. Leonenko, E. Orsingher, and K. V. Rybasov. Limiting distributions of the solutions of the multidimensional Burgers equation with random initial conditions. II. Ukr. Mat. Zh., 46(8):1003–1010, 1994.

    Article  MathSciNet  Google Scholar 

  168. N. N. Leonenko, E. Orsingher, and K. V. Rybasov. Limiting distributions of the solutions of the multidimensional Burgers equation with random initial conditions. I. Ukr. Math. J., 46(7):953–962, 1994.

    Article  MathSciNet  Google Scholar 

  169. V. Liskevich and M. Röckner. Strong uniqueness for certain infinite-dimensional Dirichlet operators and applications to stochastic quantization. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 27(1):69–91, 1998.

    MATH  MathSciNet  Google Scholar 

  170. P. G. Lemarié-Rieusset. Recent developments in the Navier–Stokes problem. Chapman & Hall Research Notes in Mathematics 431. Boca Raton, FL: Chapman & Hall/ 395 p., 2002.

    Google Scholar 

  171. N. N. Leonenko and W. A. Woyczynski. Parameter identification for stochastic Burgers’ flows via parabolic rescaling. Probab. Math. Stat., 21(1):1–55, 2001.

    MATH  MathSciNet  Google Scholar 

  172. N. Masmoudi. Asymptotic problems and compressible-incompressible limit. Málek, Josef (ed.) et al., Advances in mathematical fluid mechanics. Lecture notes of the 6th international school on mathematical theory in fluid mechanics, Paseky, Czech Republic, September 19–26, 1999. Berlin: Springer. 119–158, 2000.

    Google Scholar 

  173. J. C. Mattingly. Ergodicity of 2D Navier–Stokes equations with random forcing and large viscosity. Commun. Math. Phys., 206(2): 273–288, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  174. A. J. Majda and A. L. Bertozzi. Vorticity and incompressible flow. Cambridge Univ. Press, 2002.

    Google Scholar 

  175. J. E. Marsden, D. Ebin, and A. Fischer. Diffeomorphism groups, hydrodynamics and relativity. Proceedings of the Thirteenth Biennial Seminar of the Canadian Mathematical Congress Differential Geometry and Applications, 1:135–279, 1972.

    MathSciNet  Google Scholar 

  176. S. Meléard. A trajectorial proof of the vortex method for the two-dimensional Navier–Stokes equation. Ann. Appl. Probab., 10(4): 1197–1211, 2000.

    MATH  MathSciNet  Google Scholar 

  177. R. A. Minlos. Introduction to mathematical statistical physics, volume 19 of University Lecture Series. American Mathematical Society, Providence, RI, 2000.

    MATH  Google Scholar 

  178. C. Marchioro and M. Pulvirenti. Mathematical theory of incompressible nonviscous fluids, volume 96 of Applied Mathematical Sciences. Springer-Verlag, New York, 1994.

    MATH  Google Scholar 

  179. C. Marchioro, A. Pellegrinotti, and M. Pulvirenti. Selfadjointness of the Liouville operator for infinite classical systems. Comm. Math. Phys., 58(2):113–129, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  180. R. Mikulevicius and B. L. Rozovskii. Stochastic Navier–Stokes equations for turbulent flows. SIAM J. Math. Anal., 35(5):1250–1310 (electronic), 2004.

    Article  MATH  MathSciNet  Google Scholar 

  181. R. Mikulevicius and B. L. Rozovskii. Global L 2-solutions of stochastic Navier–Stokes equations. Ann. Probab., 33(1):137–176, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  182. J.-L. Menaldi and S. S. Sritharan. Stochastic 2-D Navier–Stokes equation. Appl. Math. Optimization, 46(1):31, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  183. H. P. McKean and K. L. Vaninsky. Statistical mechanics of nonlinear wave equations. In Trends and perspectives in applied mathematics, volume 100 of Appl. Math. Sci., pages 239–264. Springer, New York, 1994.

    Google Scholar 

  184. R. Mikulevicius and G. Valiukevicius. On stochastic Euler equation in R d. Electron. J. Probab., 5(6) 20 pp. (electronic), 2000.

    Google Scholar 

  185. J. Neustupa, P. Penel, (eds.), Mathematical fluid mechanics. Recent results and open questions. Advances in Mathematical Fluid Mechanics. Basel: Birkhäuser. ix, 2001.

    Google Scholar 

  186. B. Nachtergaele and H.-T. Yau. Derivation of the Euler equations from quantum dynamics. Comm. Math. Phys., 243(3):485–540, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  187. H. Osada. Propagation of chaos for the two dimensional Navier–Stokes equation. Probabilistic methods in mathematical physics, Proc. Taniguchi Int. Symp., Katata and Kyoto/Jap. 1985, 303–334, 1987.

    MathSciNet  Google Scholar 

  188. M. Ossiander. A probabilistic representation of solutions of the incompressible Navier–Stokes equations in 3. Probab. Theory Relat. Fields, 133(2):267–298, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  189. C. S. Peskin. A random-walk interpretation of the incompressible Navier–Stokes equations. Commun. Pure Appl. Math., 38:845–852, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  190. M. Pulvirenti. On invariant measures for the 2-D Euler flow. In: Mathematical aspects of vortex dynamics. Proceedings of the workshop held in Leesburg, Virginia, April 1988. R. Caflisch, (ed.), p. 88–96, SIAM, Philadelphia, PA, 1989.

    Google Scholar 

  191. J. Quastel and H.-T. Yau. Lattice gases, large deviations, and the incompressible Navier–Stokes equations. Ann. of Math., 148(1): 51–108, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  192. D. L. Rapoport. On the geometry of the random representations for viscous fluids and a remarkable pure noise representation. Rep. Math. Phys., 50(2):211–250, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  193. D. L. Rapoport. Random diffeomorphisms and integration of the classical Navier–Stokes equations. Rep. Math. Phys., 49(1):1–27, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  194. D. L. Rapoport. Random symplectic geometry and the realizations of the random representations of the Navier–Stokes equations by ordinary differential equations. Random Oper. Stoch. Equ., 11(4):371–401, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  195. D. L. Rapoport. On the unification of geometric and random structures through torsion fields: Brownian motions, viscous and magneto-fluid dynamics. Found. Phys., 35:1205–1244, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  196. R. Robert. A maximum-entropy principle for two-dimensional perfect fluid dynamics. J. Stat. Phys., 65(3-4):531–553, 1991.

    Article  MATH  Google Scholar 

  197. R. Robert. Statistical hydrodynamics (Onsager revisited). Friedlander, S. (ed.) et al., Handbook of mathematical fluid dynamics. Vol. II. Amsterdam: North-Holland. 1–54, 2003.

    Chapter  Google Scholar 

  198. M. Romito. Ergodicity of the finite-dimensional approximation of the 3D Navier–Stokes equations forced by a degenerate noise. J. Stat. Phys., 114(1–2):155–177, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  199. R. M. S. Rosa. Turbulence Theories. In: Encyclopedia of Mathematical Physics, J.-P. Françoise, G. L. Naber and S. T. Tsou (eds.), Elsevier, Oxford, Vol. 5, 295–302 p., 2006.

    Google Scholar 

  200. O. S. Rozanova. Solutions with linear profile of velocity to the Euler equations in several dimensions. Hou, Thomas Y. (ed.) et al., Hyperbolic problems: Theory, numerics, applications. Proceedings of the ninth international conference on hyperbolic problems, Pasadena, CA, USA, March 25–29, 2002. Berlin: Springer. 861–870, 2003.

    Google Scholar 

  201. O. S. Rozanova. Development of singularities for the compressible Euler equations with external force in several dimensions. Preprint at arXiv:math/0411652v2, December 2004.

    Google Scholar 

  202. M. Reed and B. Simon. Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975.

    Google Scholar 

  203. R. Robert and J. Sommeria. Statistical equilibrium states for two-dimensional flows. J. Fluid Mech., 229:291–310, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  204. M. Röckner and Z. Sobol. Kolmogorov equations in infinite dimensions: well-posedness and regularity of solutions, with applications to stochastic generalized Burgers equations. Ann. Probab., 34(2): 663–727, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  205. D. Ruelle. Statistical Mechanics: Rigorous results. The Mathematical Physics Monographs Series. New York-Amsterdam: W. A. Benjamin, 1969.

    MATH  Google Scholar 

  206. D. Serre. Invariants et dégénérescence symplectique de l’équation d’Euler des fluides parfaits incompressibles. C. R. Acad. Sci. Paris Sér. I Math., 298(14):349–352, 1984.

    MATH  MathSciNet  Google Scholar 

  207. D. Serre. Les invariants du premier ordre de l’équation d’Euler en dimension trois. Phys. D, 13(1-2):105–136, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  208. A. Shnirelman. On the nonuniqueness of weak solution of the Euler equation. Comm. Pure Appl. Math., 50(12):1261–1286, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  209. B. Simon. The P(φ) 2 Euclidean (quantum) field theory. Princeton University Press, Princeton, N.J., 1974. Princeton Series in Physics.

    Google Scholar 

  210. Ya. G. Sinai. Two results concerning asymptotic behavior of solutions of the Burgers equation with force. J. Statist. Phys. 64 (1–2):1–12, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  211. Ya. Sinai. On local and global existence and uniqueness of solutions of the 3D Navier–Stokes system on 3. In Perspectives in analysis, volume 27 of Math. Phys. Stud., pages 269–281. Springer, Berlin, 2005.

    Chapter  Google Scholar 

  212. Ya. Sinai. Power series for solutions of the 3D-Navier–Stokes system on R 3. J. Stat. Phys., 121(5–6):779–803, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  213. Ya. Sinai, These proceedings.

    Google Scholar 

  214. H. Sohr. The Navier–Stokes equations. An elementary functional analytic approach. Birkhäuser Advanced Texts. Basel: Birkhäuser. 2001.

    Google Scholar 

  215. W. Stannat. (Nonsymmetric) Dirichlet operators on L 1: existence, uniqueness and associated Markov processes. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28(1):99–140, 1999.

    Google Scholar 

  216. W. Stannat. L 1-uniqueness of regularized 2D-Euler and stochastic Navier–Stokes equations. J. Funct. Anal., 200(1):101–117, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  217. W. Stannat. A new a priori estimate for the Kolmogorov operator of a 2D-stochastic Navier-Stokes equation. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 10(4): 483–497, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  218. H.S.G. Swann. The convergence with vanishing viscosity of nonstationary Navier–Stokes flow to ideal flow in R 3. Trans. Am. Math. Soc., 157:373–397, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  219. S. F. Shandarin and Ya. B. Zel′dovich. The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium. Rev. Modern Phys., 61(2):185–220, 1989.

    Article  MathSciNet  Google Scholar 

  220. A. S. Sznitman. A propagation of chaos result of Burgers’ equation. Hydrodynamic behavior and interacting particle systems, Proc. Workshop, Minneapolis/Minn. 1986, IMA Vol. Math. Appl. 9, 181–188, 1987.

    Google Scholar 

  221. R. Temam. Navier–Stokes equations and nonlinear functional analysis, volume 41 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983.

    Google Scholar 

  222. R. Temam. Navier–Stokes equations, volume 2 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, third edition, 1984. Theory and numerical analysis, with an appendix by F. Thomasset.

    Google Scholar 

  223. R. Temam. Some developments on Navier–Stokes equations in the Second Half of the 20th Century. Development of mathematics. Université Paris-Sud, Orsay, 2000.

    Google Scholar 

  224. A. Truman, C.N. Reynolds, and D. Williams. Stochastic Burgers equation in d-dimensions – a one-dimensional analysis: hot and cool caustics and intermittence of stochastic turbulence. Davies, I. M. (ed.) et al., Probabilistic methods in fluids. Proceedings of the Swansea 2002 workshop, Wales, UK, April 14–19, 2002. Singapore: World Scientific. 239–262, 2003.

    Google Scholar 

  225. A. Truman and J.-L. Wu. Stochastic Burgers equation with Lévy space-time white noise. Davies, I. M. (ed.) et al., Probabilistic methods in fluids. Proceedings of the Swansea 2002 workshop, Wales, UK, April 14–19, 2002. Singapore: World Scientific. 298–323, 2003.

    Google Scholar 

  226. A. Truman and J.-L. Wu. Fractal Burgers’ equation driven by Lévy noise. Stochastic partial differential equations and applications, 7:295–310, 2006.

    MathSciNet  Google Scholar 

  227. A. Truman and H. Z. Zhao. Burgers equation and the WKB-Langer asymptotic L 2 approximation of eigenfunctions and their derivatives. Davies, I. M. (ed.) et al., Probabilistic methods in fluids. Proceedings of the Swansea 2002 workshop, Wales, UK, April 14–19, 2002. Singapore: World Scientific. 332–366, 2003.

    Google Scholar 

  228. M. J. Vishik and A. V. Fursikov. Mathematical problems of statistical hydromechanics. Mathematics and Its Applications: Soviet Series, 9, 576 p. Kluwer Academic Publishers, Dordrecht, Boston, London, 1988. Transl. from the Russian by D. A. Leites.

    Google Scholar 

  229. M. I. Vishik, A. I. Komech, and A.V. Fursikov. Some mathematical problems of statistical hydromechanics. Russ. Math. Surv., 34: 149–234, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  230. W. A. Woyczyński. Burgers-KPZ turbulence. Göttingen Lectures. Lecture Notes in Mathematics. 1700. Berlin: Springer. xi, 318 p., 1998.

    Google Scholar 

  231. P. Zgliczyński. Trapping regions and an ODE-type proof of the existence and uniqueness theorem for Navier–Stokes equations with periodic boundary conditions on the plane. Univ. Iagel. Acta Math, 41:89–113, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Albeverio, S., Ferrario, B. (2008). Some Methods of Infinite Dimensional Analysis in Hydrodynamics: An Introduction. In: Da Prato, G., Rückner, M. (eds) SPDE in Hydrodynamic: Recent Progress and Prospects. Lecture Notes in Mathematics, vol 1942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78493-7_1

Download citation

Publish with us

Policies and ethics