Skip to main content

Finite Elements for the Stokes Problem

  • Chapter

Part of the Lecture Notes in Mathematics book series (LNMCIME,volume 1939)

Keywords

  • Quadrature Rule
  • Stokes Problem
  • Bubble Function
  • Lipschitz Continuous Boundary
  • Taylor Scheme

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Amara and J.M. Thomas. Equilibrium finite elements for the linear elastic problem. Numer. Math., 33:367–383, 1979.

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. D.N. Arnold, F. Brezzi, and J. Douglas. PEERS: a new mixed finite element for plane elasticity. Jpn. J. Appl. Math., 1:347–367, 1984.

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. D.N. Arnold, F. Brezzi, and M. Fortin. A stable finite element for the Stokes equations. Calcolo, 21:337–344, 1984.

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. D.N. Arnold and J.S. Falk. A new mixed formulation for elasticity. Numer. Math., 53:13–30, 1988.

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. D.N. Arnold. On nonconforming linear-constant elements for some variants of the Stokes equations. Istit. Lombardo Accad. Sci. Lett. Rend. A, 127(1):83–93 (1994), 1993.

    Google Scholar 

  6. D.N. Arnold, D. Boffi, and R.S. Falk. Approximation by quadrilateral finite elements. Math. Comp., 71(239):909–922, 2002.

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. S.N. Atluri and C. Yang. A hybrid finite element for Stokes flow II. Int. J. Numer. Methods Fluids, 4:43–69, 1984.

    CrossRef  MATH  Google Scholar 

  8. M. Bercovier. Régularisation duale des problèmes variationnels mixtes. PhD thesis, Université de Rouen, 1976.

    Google Scholar 

  9. M. Bercovier. Perturbation of a mixed variational problem, applications to mixed finite element methods. R.A.I.R.O. Anal. Numer., 12:211–236, 1978.

    MATH  MathSciNet  Google Scholar 

  10. M. Bercovier and O.A. Pironneau. Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math., 33:211–224, 1977.

    CrossRef  MathSciNet  Google Scholar 

  11. C. Bernardi and G. Raugel. Méthodes d’éléments finis mixtes pour les équations de Stokes et de Navier–Stokes dans un polygone non convexe. Calcolo, 18:255–291, 1981.

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. D. Boffi. Stability of higher order triangular Hood–Taylor methods for stationary Stokes equations. Math. Models Methods Appl. Sci., 2(4):223–235, 1994.

    CrossRef  MathSciNet  Google Scholar 

  13. D. Boffi. Minimal stabilizations of the P k+1P k approximation of the stationary Stokes equations. Math. Models Methods Appl. Sci., 5(2):213–224, 1995.

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. D. Boffi. Three-dimensional finite element methods for the Stokes problem. SIAM J. Numer. Anal., 34:664–670, 1997.

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. D. Boffi and L. Gastaldi. On the quadrilateral Q 2P 1 element for the Stokes problem. Int. J. Numer. Methods Fluids, 39:1001–1011, 2002.

    CrossRef  MATH  MathSciNet  Google Scholar 

  16. D. Boffi and C. Lovadina. Analysis of new augmented Lagrangian formulations for mixed finite element schemes. Numer. Math., 75(4):405–419, 1997.

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. D. Boffi, F. Brezzi, and L. Gastaldi. On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comput., 69(229):121–140, 2000.

    MATH  MathSciNet  Google Scholar 

  18. J.M. Boland and R.A. Nicolaides. Stability of finite elements under divergence constraints. SIAM J. Numer. Anal., 20(4):722–731, 1983.

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. F. Brezzi and K.J. Bathe. A discourse on the stability conditions for mixed finite element formulations. CMAME, 82:27–57, 1990.

    MATH  MathSciNet  Google Scholar 

  20. F. Brezzi, J. Douglas, Jr., and L.D. Marini. Recent results on mixed finite element methods for second order elliptic problems. Vistas in applied mathematics, 25–43, Transl. Ser. Math. Engrg., Optimization Software, New York, 1986.

    Google Scholar 

  21. F. Brezzi and R.S. Falk. Stability of higher-order Hood-Taylor methods. SIAM J. Numer. Anal., 28(3):581–590, 1991.

    CrossRef  MATH  MathSciNet  Google Scholar 

  22. F. Brezzi, J. Le Tellier, and T. Olier. Mixed finite element approximation for the stationary Navier–Stokes equations (in Russian). In Viceslitelnia Metodii V. Prikladnoi Mathematiceskie, NAUKA, Novosibirsk, 1982, pp. 96–108. Meeting INRIA, Novosibirsk.

    Google Scholar 

  23. F. Brezzi and J. Pitkäranta. On the stabilization of finite element approximations of the Stokes equations. In W. Hackbush, editor, Efficient Solutions of Elliptic Systems, Notes on Numerical Fluid Mechanics, vol. 10, Braunschweig, Wiesbaden, Vieweg, 1984.

    Google Scholar 

  24. F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer, Berlin Heidelberg New York, 1991.

    MATH  Google Scholar 

  25. P. Caussignac. Explicit basis functions of quadratic and improved quadratic finite element spaces for the Stokes problem. Commun. Appl. Numer. Methods, 2:205–211, 1986.

    CrossRef  MATH  Google Scholar 

  26. P. Caussignac. Computation of pressure from the finite element vorticity stream-function approximation of the Stokes problem. Commum. Appl. Numer. Methods, 3:287–295, 1987.

    CrossRef  MATH  Google Scholar 

  27. P.G. Ciarlet. Mathematical elasticity, vol. I. Three-Dimensional Elasticity. North-Holland, Amsterdam, 1988.

    Google Scholar 

  28. P.G. Ciarlet. Mathematical elasticity, vol. II. Theory of Plates. North-Holland, Amsterdam, 1997.

    Google Scholar 

  29. J.F. Ciavaldini and J.C. Nédélec. Sur l’élément de Fraeijs de Veubeke et Sander. R.A.I.R.O. Anal. Numer., 8:29–45, 1974.

    Google Scholar 

  30. P. Clément. Approximation by finite element functions using local regularization. R.A.I.R.O. Anal. Numer., 9:77–84, 1975.

    Google Scholar 

  31. M. Crouzeix and P.A. Raviart. Conforming and nonconforming finite element methods for solving the stationary Stokes equations. R.A.I.R.O. Anal. Numer., 7:33–76, 1973.

    MathSciNet  Google Scholar 

  32. G. Duvaut and J.L. Lions. Les inéquations en mécanique et en physique. Dunod, Paris, 1972.

    MATH  Google Scholar 

  33. A. Fortin. Méthodes d’éléments finis pour les équations de Navier–Stokes. PhD thesis, Université Laval, 1984.

    Google Scholar 

  34. A. Fortin and M. Fortin. Newer and newer elements for incompressible flow. In R.H. Gallagher, G.F. Carey, J.T. Oden, and O.C. Zienkiewicz, editors, Finite Elements in Fluids, Volume 6. Chichester, England and New York, Wiley-Interscience, 1985, p. 171–187.

    Google Scholar 

  35. M. Fortin. Utilisation de la méthode des éléments finis en mécanique des fluides. Calcolo, 12:405–441, 1975.

    CrossRef  MathSciNet  Google Scholar 

  36. M. Fortin. An analysis of the convergence of mixed finite element methods. R.A.I.R.O. Anal. Numer., 11:341–354, 1977.

    MATH  MathSciNet  Google Scholar 

  37. M. Fortin. Old and new finite elements for incompressible flows. Int. J. Numer. Methods Fluids, 1:347–364, 1981.

    CrossRef  MATH  MathSciNet  Google Scholar 

  38. M. Fortin, R. Peyret, and R. Temam. Résolution numérique des équations de Navier–Stokes pour un fluide visqueux incompressible. J. Mécanique, 10, 3:357–390, 1971.

    MATH  MathSciNet  Google Scholar 

  39. M. Fortin and M. Soulie. A nonconforming piecewise quadratic finite element on triangles. Int. J. Numer. Methods Eng., 19:505–520, 1983.

    CrossRef  MATH  MathSciNet  Google Scholar 

  40. M. Fortin and F. Thomasset. Mixed finite element methods for incompressible flow problems. J. Comput. Physics, 37:173–215, 1979.

    MathSciNet  Google Scholar 

  41. V. Girault and P.A. Raviart. Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms. Springer, Berlin Heidelberg New York, 1986.

    MATH  Google Scholar 

  42. R. Glowinski and O. Pironneau. Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Rev., 17:167–212, 1979.

    CrossRef  MathSciNet  Google Scholar 

  43. D. Griffiths. Finite elements for incompressible flow. Math. Methods Appl. Sci., 1:16–31, 1979.

    CrossRef  MATH  MathSciNet  Google Scholar 

  44. F. Hecht. Construction d’une base de fontions P1 non-conformes à divergence nulle dans 3. R.A.I.R.O. Anal. Numer., 15:119–150, 1981.

    MATH  MathSciNet  Google Scholar 

  45. P. Hood and C. Taylor. Numerical solution of the Navier–Stokes equations using the finite element technique. Comput. Fluids, 1:1–28, 1973.

    CrossRef  MathSciNet  Google Scholar 

  46. T.J.R. Hughes and H. Allik. Finite elements for compressible and incompressible continua. In Proceedings of the Symposium on Civil Engineering, Nashville, TN. Vanderbilt University, 1969, pp. 27–62.

    Google Scholar 

  47. C. Johnson. On the convergence of a mixed finite element method for plate bending problems. Numer. Math., 21:43–62, 1973.

    CrossRef  MATH  MathSciNet  Google Scholar 

  48. C. Johnson and J. Pitkäranta. Analysis of some mixed finite element methods related to reduced integration. Math. Comput., 38:375–400, 1982.

    CrossRef  MATH  Google Scholar 

  49. D.S. Malkus. Eigenproblems associated with the discrete LBB-condition for incompressible finite elements. Int. J. Eng. Sci., 19:1299–1310, 1981.

    CrossRef  MATH  MathSciNet  Google Scholar 

  50. D.S Malkus and T.J.R. Hughes. Mixed finite element methods. reduced and selective integration techniques: a unification of concepts. Comput. Methods Appl. Mech. Eng., 15:63–81, 1978.

    CrossRef  MATH  Google Scholar 

  51. Z. Mghazli. Une méthode mixte pour les équations de l’hydrodynamique. PhD thesis, Université de Montréal, 1987.

    Google Scholar 

  52. J.T. Oden and O. Jacquotte. Stability of some mixed finite element methods for Stokesian flows. Comput. Methods Appl. Mech. Eng., 43:231–247, 1984.

    CrossRef  MATH  MathSciNet  Google Scholar 

  53. O. Pironneau. Finite Element Methods for Fluids. John Wiley, Chichester, 1989. Translated from the French.

    Google Scholar 

  54. J. Qin. On the convergence of some simple finite elements for incompressible flows. PhD thesis, Penn State University, 1994.

    Google Scholar 

  55. R. Rannacher and S. Turek. Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Equations, 8(2):97–111, 1992.

    CrossRef  MATH  MathSciNet  Google Scholar 

  56. R.L. Sani, P.M. Gresho, R.L. Lee, and D.F. Griffiths. The cause and cure (?) of the spurious pressures generated by certain FEM solutions of the incompressible Navier–Stokes equations. I. Int. J. Numer. Methods Fluids, 1(1):17–43, 1981.

    CrossRef  MATH  MathSciNet  Google Scholar 

  57. R. L. Sani, P. M. Gresho, R. L. Lee, D. F. Griffiths, and M. Engelman. The cause and cure (!) of the spurious pressures generated by certain FEM solutions of the incompressible Navier–Stokes equations. II. Int. J. Numer. Methods Fluids, 1(2):171–204, 1981.

    CrossRef  MATH  MathSciNet  Google Scholar 

  58. L.R. Scott and M. Vogelius. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. Math. Model. Numer. Anal., 9:11–43, 1985.

    Google Scholar 

  59. R. Stenberg. Analysis of mixed finite element methods for the Stokes problem: a unified approach. Math. Comput., 42:9–23, 1984.

    CrossRef  MATH  MathSciNet  Google Scholar 

  60. R. Stenberg. On the construction of optimal mixed finite element methods for the linear elasticity problem. Numer. Math., 48:447–462, 1986.

    CrossRef  MATH  MathSciNet  Google Scholar 

  61. R. Stenberg. On some three-dimensional finite elements for incompressible media. Comput. Methods Appl. Mech. Eng., 63:261–269, 1987.

    CrossRef  MATH  MathSciNet  Google Scholar 

  62. R. Stenberg. On the postprocessing of mixed equilibrium finite element methods. In W. Hackbusch and K. Witsch, editors, Numerical Tehchniques in Continuum Mechanics. Veiweg, Braunschweig, 1987. Proceedings of the Second GAMM-Seminar, Kiel, 1986.

    Google Scholar 

  63. R. Stenberg. Error analysis of some finite element methods for the Stokes problem. Math. Comput., 54(190):495–508, 1990. Chesnay, France, 1988.

    CrossRef  MATH  MathSciNet  Google Scholar 

  64. R. Temam. Navier–Stokes Equations. North-Holland, Amsterdam, 1977.

    Google Scholar 

  65. F. Thomasset. Implementation of Finite Element Methods for Navier–Stokes Equations. Springer Series in Computational Physics. Springer, Berlin Heidelberg New York, 1981.

    MATH  Google Scholar 

  66. R. Verfürth. Error estimates for a mixed finite element approximation of the Stokes equation. R.A.I.R.O. Anal. Numer., 18:175–182, 1984.

    MATH  Google Scholar 

  67. O.C. Zienkiewicz, S. Qu, R.L. Taylor, and S. Nakazawa. The patch text for mixed formulations. Int. J. Numer. Methods Eng., 23:1873–1883, 1986.

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boffi, D., Brezzi, F., Fortin, M. (2008). Finite Elements for the Stokes Problem. In: Boffi, D., Gastaldi, L. (eds) Mixed Finite Elements, Compatibility Conditions, and Applications. Lecture Notes in Mathematics, vol 1939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78319-0_2

Download citation