Keywords
- Quadrature Rule
- Stokes Problem
- Bubble Function
- Lipschitz Continuous Boundary
- Taylor Scheme
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
M. Amara and J.M. Thomas. Equilibrium finite elements for the linear elastic problem. Numer. Math., 33:367–383, 1979.
D.N. Arnold, F. Brezzi, and J. Douglas. PEERS: a new mixed finite element for plane elasticity. Jpn. J. Appl. Math., 1:347–367, 1984.
D.N. Arnold, F. Brezzi, and M. Fortin. A stable finite element for the Stokes equations. Calcolo, 21:337–344, 1984.
D.N. Arnold and J.S. Falk. A new mixed formulation for elasticity. Numer. Math., 53:13–30, 1988.
D.N. Arnold. On nonconforming linear-constant elements for some variants of the Stokes equations. Istit. Lombardo Accad. Sci. Lett. Rend. A, 127(1):83–93 (1994), 1993.
D.N. Arnold, D. Boffi, and R.S. Falk. Approximation by quadrilateral finite elements. Math. Comp., 71(239):909–922, 2002.
S.N. Atluri and C. Yang. A hybrid finite element for Stokes flow II. Int. J. Numer. Methods Fluids, 4:43–69, 1984.
M. Bercovier. Régularisation duale des problèmes variationnels mixtes. PhD thesis, Université de Rouen, 1976.
M. Bercovier. Perturbation of a mixed variational problem, applications to mixed finite element methods. R.A.I.R.O. Anal. Numer., 12:211–236, 1978.
M. Bercovier and O.A. Pironneau. Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math., 33:211–224, 1977.
C. Bernardi and G. Raugel. Méthodes d’éléments finis mixtes pour les équations de Stokes et de Navier–Stokes dans un polygone non convexe. Calcolo, 18:255–291, 1981.
D. Boffi. Stability of higher order triangular Hood–Taylor methods for stationary Stokes equations. Math. Models Methods Appl. Sci., 2(4):223–235, 1994.
D. Boffi. Minimal stabilizations of the P k+1 − P k approximation of the stationary Stokes equations. Math. Models Methods Appl. Sci., 5(2):213–224, 1995.
D. Boffi. Three-dimensional finite element methods for the Stokes problem. SIAM J. Numer. Anal., 34:664–670, 1997.
D. Boffi and L. Gastaldi. On the quadrilateral Q 2 − P 1 element for the Stokes problem. Int. J. Numer. Methods Fluids, 39:1001–1011, 2002.
D. Boffi and C. Lovadina. Analysis of new augmented Lagrangian formulations for mixed finite element schemes. Numer. Math., 75(4):405–419, 1997.
D. Boffi, F. Brezzi, and L. Gastaldi. On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comput., 69(229):121–140, 2000.
J.M. Boland and R.A. Nicolaides. Stability of finite elements under divergence constraints. SIAM J. Numer. Anal., 20(4):722–731, 1983.
F. Brezzi and K.J. Bathe. A discourse on the stability conditions for mixed finite element formulations. CMAME, 82:27–57, 1990.
F. Brezzi, J. Douglas, Jr., and L.D. Marini. Recent results on mixed finite element methods for second order elliptic problems. Vistas in applied mathematics, 25–43, Transl. Ser. Math. Engrg., Optimization Software, New York, 1986.
F. Brezzi and R.S. Falk. Stability of higher-order Hood-Taylor methods. SIAM J. Numer. Anal., 28(3):581–590, 1991.
F. Brezzi, J. Le Tellier, and T. Olier. Mixed finite element approximation for the stationary Navier–Stokes equations (in Russian). In Viceslitelnia Metodii V. Prikladnoi Mathematiceskie, NAUKA, Novosibirsk, 1982, pp. 96–108. Meeting INRIA, Novosibirsk.
F. Brezzi and J. Pitkäranta. On the stabilization of finite element approximations of the Stokes equations. In W. Hackbush, editor, Efficient Solutions of Elliptic Systems, Notes on Numerical Fluid Mechanics, vol. 10, Braunschweig, Wiesbaden, Vieweg, 1984.
F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer, Berlin Heidelberg New York, 1991.
P. Caussignac. Explicit basis functions of quadratic and improved quadratic finite element spaces for the Stokes problem. Commun. Appl. Numer. Methods, 2:205–211, 1986.
P. Caussignac. Computation of pressure from the finite element vorticity stream-function approximation of the Stokes problem. Commum. Appl. Numer. Methods, 3:287–295, 1987.
P.G. Ciarlet. Mathematical elasticity, vol. I. Three-Dimensional Elasticity. North-Holland, Amsterdam, 1988.
P.G. Ciarlet. Mathematical elasticity, vol. II. Theory of Plates. North-Holland, Amsterdam, 1997.
J.F. Ciavaldini and J.C. Nédélec. Sur l’élément de Fraeijs de Veubeke et Sander. R.A.I.R.O. Anal. Numer., 8:29–45, 1974.
P. Clément. Approximation by finite element functions using local regularization. R.A.I.R.O. Anal. Numer., 9:77–84, 1975.
M. Crouzeix and P.A. Raviart. Conforming and nonconforming finite element methods for solving the stationary Stokes equations. R.A.I.R.O. Anal. Numer., 7:33–76, 1973.
G. Duvaut and J.L. Lions. Les inéquations en mécanique et en physique. Dunod, Paris, 1972.
A. Fortin. Méthodes d’éléments finis pour les équations de Navier–Stokes. PhD thesis, Université Laval, 1984.
A. Fortin and M. Fortin. Newer and newer elements for incompressible flow. In R.H. Gallagher, G.F. Carey, J.T. Oden, and O.C. Zienkiewicz, editors, Finite Elements in Fluids, Volume 6. Chichester, England and New York, Wiley-Interscience, 1985, p. 171–187.
M. Fortin. Utilisation de la méthode des éléments finis en mécanique des fluides. Calcolo, 12:405–441, 1975.
M. Fortin. An analysis of the convergence of mixed finite element methods. R.A.I.R.O. Anal. Numer., 11:341–354, 1977.
M. Fortin. Old and new finite elements for incompressible flows. Int. J. Numer. Methods Fluids, 1:347–364, 1981.
M. Fortin, R. Peyret, and R. Temam. Résolution numérique des équations de Navier–Stokes pour un fluide visqueux incompressible. J. Mécanique, 10, 3:357–390, 1971.
M. Fortin and M. Soulie. A nonconforming piecewise quadratic finite element on triangles. Int. J. Numer. Methods Eng., 19:505–520, 1983.
M. Fortin and F. Thomasset. Mixed finite element methods for incompressible flow problems. J. Comput. Physics, 37:173–215, 1979.
V. Girault and P.A. Raviart. Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms. Springer, Berlin Heidelberg New York, 1986.
R. Glowinski and O. Pironneau. Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Rev., 17:167–212, 1979.
D. Griffiths. Finite elements for incompressible flow. Math. Methods Appl. Sci., 1:16–31, 1979.
F. Hecht. Construction d’une base de fontions P1 non-conformes à divergence nulle dans ℝ 3. R.A.I.R.O. Anal. Numer., 15:119–150, 1981.
P. Hood and C. Taylor. Numerical solution of the Navier–Stokes equations using the finite element technique. Comput. Fluids, 1:1–28, 1973.
T.J.R. Hughes and H. Allik. Finite elements for compressible and incompressible continua. In Proceedings of the Symposium on Civil Engineering, Nashville, TN. Vanderbilt University, 1969, pp. 27–62.
C. Johnson. On the convergence of a mixed finite element method for plate bending problems. Numer. Math., 21:43–62, 1973.
C. Johnson and J. Pitkäranta. Analysis of some mixed finite element methods related to reduced integration. Math. Comput., 38:375–400, 1982.
D.S. Malkus. Eigenproblems associated with the discrete LBB-condition for incompressible finite elements. Int. J. Eng. Sci., 19:1299–1310, 1981.
D.S Malkus and T.J.R. Hughes. Mixed finite element methods. reduced and selective integration techniques: a unification of concepts. Comput. Methods Appl. Mech. Eng., 15:63–81, 1978.
Z. Mghazli. Une méthode mixte pour les équations de l’hydrodynamique. PhD thesis, Université de Montréal, 1987.
J.T. Oden and O. Jacquotte. Stability of some mixed finite element methods for Stokesian flows. Comput. Methods Appl. Mech. Eng., 43:231–247, 1984.
O. Pironneau. Finite Element Methods for Fluids. John Wiley, Chichester, 1989. Translated from the French.
J. Qin. On the convergence of some simple finite elements for incompressible flows. PhD thesis, Penn State University, 1994.
R. Rannacher and S. Turek. Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Equations, 8(2):97–111, 1992.
R.L. Sani, P.M. Gresho, R.L. Lee, and D.F. Griffiths. The cause and cure (?) of the spurious pressures generated by certain FEM solutions of the incompressible Navier–Stokes equations. I. Int. J. Numer. Methods Fluids, 1(1):17–43, 1981.
R. L. Sani, P. M. Gresho, R. L. Lee, D. F. Griffiths, and M. Engelman. The cause and cure (!) of the spurious pressures generated by certain FEM solutions of the incompressible Navier–Stokes equations. II. Int. J. Numer. Methods Fluids, 1(2):171–204, 1981.
L.R. Scott and M. Vogelius. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. Math. Model. Numer. Anal., 9:11–43, 1985.
R. Stenberg. Analysis of mixed finite element methods for the Stokes problem: a unified approach. Math. Comput., 42:9–23, 1984.
R. Stenberg. On the construction of optimal mixed finite element methods for the linear elasticity problem. Numer. Math., 48:447–462, 1986.
R. Stenberg. On some three-dimensional finite elements for incompressible media. Comput. Methods Appl. Mech. Eng., 63:261–269, 1987.
R. Stenberg. On the postprocessing of mixed equilibrium finite element methods. In W. Hackbusch and K. Witsch, editors, Numerical Tehchniques in Continuum Mechanics. Veiweg, Braunschweig, 1987. Proceedings of the Second GAMM-Seminar, Kiel, 1986.
R. Stenberg. Error analysis of some finite element methods for the Stokes problem. Math. Comput., 54(190):495–508, 1990. Chesnay, France, 1988.
R. Temam. Navier–Stokes Equations. North-Holland, Amsterdam, 1977.
F. Thomasset. Implementation of Finite Element Methods for Navier–Stokes Equations. Springer Series in Computational Physics. Springer, Berlin Heidelberg New York, 1981.
R. Verfürth. Error estimates for a mixed finite element approximation of the Stokes equation. R.A.I.R.O. Anal. Numer., 18:175–182, 1984.
O.C. Zienkiewicz, S. Qu, R.L. Taylor, and S. Nakazawa. The patch text for mixed formulations. Int. J. Numer. Methods Eng., 23:1873–1883, 1986.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Boffi, D., Brezzi, F., Fortin, M. (2008). Finite Elements for the Stokes Problem. In: Boffi, D., Gastaldi, L. (eds) Mixed Finite Elements, Compatibility Conditions, and Applications. Lecture Notes in Mathematics, vol 1939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78319-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-78319-0_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78314-5
Online ISBN: 978-3-540-78319-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)