Skip to main content

Automated Novelty Detection in Industrial Systems

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 116))

Novelty detection is the identification of abnormal system behaviour, in which a model of normality is constructed, with deviations from the model identified as “abnormal”. Complex high-integrity systems typically operate normally for the majority of their service lives, and so examples of abnormal data may be rare in comparison to the amount of available normal data. Given the complexity of such systems, the number of possible failure modes is large, many of which may not be characterised sufficiently to construct a. traditional multi-class classifier [22]. Thus, novelty detection is particularly suited to such cases, which allows previously-unseen or poorly-understood modes of failure to be correctly identified.

This chapter describes recent advances in the application of novelty detection techniques to the analysis of data from gas-turbine engines.Whole-engine vibration-based analysis will be illustrated, using data measured from casemounted sensors, followed by the application of similar techniques to the combustor component. In each case, the investigation described by this chapter shows how advances in prognostic condition monitoring are being made possible in a principled manner using novelty detection techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roberts S, Tarassenko L (1994) Neural Comput 6:270–284

    Article  Google Scholar 

  2. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London

    MATH  Google Scholar 

  3. Mayrose I, Friedman N, Pupko T (2005) A Gamma Mixture Model Better Accounts for Among Site Heterogeneity. Bioinformatics 21(2):151–158

    Article  Google Scholar 

  4. Agusta Y, Dowe DL (2003) Unsupervised Learning of Gamma Mixture Models Using Minimum Message Length. Artificial intelligence and applications proceedings 403

    Google Scholar 

  5. Dempster AP, Laird NM, Rubin DB (1977) Maximum Likelihood from Incomplete Data via the EM Algorithm. J R Stat Soc Series B 39:1–38

    MATH  MathSciNet  Google Scholar 

  6. Markou M, Singh S (2003) Novelty Detection: A Review. Signal Processing 83:2481–2497

    Article  MATH  Google Scholar 

  7. Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley, New York

    MATH  Google Scholar 

  8. Yeung DY, Ding Y (2002) Host-Based Intrusion Detection Using Dynamic and Static Behavioral Models. Pattern Recognit 36:229–243

    Article  Google Scholar 

  9. Smyth P (1994) Markov Monitoring with Unknown States. IEEE J Sel Areas Commun 12(9):1600–1612

    Article  MathSciNet  Google Scholar 

  10. Quinn J, Williams CKI (2007) Known Unknowns: Novelty Detection in Condition Monitoring. Proceedings of 3rd Iberian conference on pattern recognition and image analysis, Lecture Notes in Computer Science, Springer

    Google Scholar 

  11. Markou M, Singh S (2006) A Neural Network-Based Novelty Detector for Image Sequence Analysis. IEEE Trans Pattern Anal Mach Intell 28(10):1664–1677

    Article  Google Scholar 

  12. Ghahramani Z, Hinton GE (1998) Variational Learning for Switching State-Space Models. Neural Comput 12(4):963–996

    Google Scholar 

  13. McSharry PE, He T, Smith LA, Tarassenko L (2002) Linear and non-linear methods for automatic seizure detection in scalp electro-encephalogram recordings. Med Biol Eng Comput 40:447–461

    Article  Google Scholar 

  14. Tax DMJ, Duin RPW (1998) Outlier detection using classifier instability. Advances in pattern recognition–the joint IAPR international workshops, Sydney, Australia, 593–601

    Google Scholar 

  15. Kohonen T (1982) Self-Organized Formation of Topologically Correct Feature Maps. Biol Cybern 43:59–69

    Article  MATH  MathSciNet  Google Scholar 

  16. Ypma A, Duin RPW (1998) Novelty Detection Using Self-Organising Maps. Prog Connect Based Inf Syst 2:1322–1325

    Google Scholar 

  17. Labib K, Vemuri R (2002) NSOM: A real-time network-based intrusion detection system using self-organizing maps. Networks security

    Google Scholar 

  18. Yin H, Allinson NM (2001) Self-organizing mixture networks for probability density estimation. IEEE Trans Neural Netw 12(2)

    Google Scholar 

  19. Vapnik V (2000) The nature of statistical learning theory. Second Edition. Springer, Berlin New York Heidelberg

    MATH  Google Scholar 

  20. Tax DMJ, Duin RPW (1999) Data Domain Description Using Support Vectors. Proceedings of ESAN99. Brussels:251–256

    Google Scholar 

  21. Scholkopf B, Williamson R, Smola AJ, Shawe-Taylor J, Platt J (2000) Support vector method for novelty detection. Advances in neural information processing systems 12, (NIPS99) Solla KMSA, Leen TK (eds.), MIT: 582–588

    Google Scholar 

  22. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    Google Scholar 

  23. Jennions IK (2006) Cross-platform challenges in engine health management. Proceesings of International Conference on Integrated Condition Monitoring, Anaheim, CA

    Google Scholar 

  24. Moya M, Hush D (1996) Neural Netw 9(3):463–474

    Article  Google Scholar 

  25. Ritter G, Gallegos M (1997) Pattern Recogn Lett 18:525–539

    Article  Google Scholar 

  26. Clifton DA, Bannister PR, Tarassenko L (2006) Learning shape for jet engine novelty detection. In: Wang J. et al. (eds.): Advances in neural networks III. Lecture Notes in Computer Science, Springer, Berlin Heidelberg New York, 3973:828–835

    Chapter  Google Scholar 

  27. Sammon JW (1969) IEEE Trans Comput 18(5):401–409

    Article  Google Scholar 

  28. DeRidder D, Duin RPW (1997) Pattern Recogn Lett

    Google Scholar 

  29. Lowe D, Tipping ME (1996) Neural Comput Appl 4:83–95

    Article  Google Scholar 

  30. Tarassenko L (1998) A guide to neural computing applications. Arnold, UK

    Google Scholar 

  31. Nabney I (2002) Netlab: algorithms for pattern recognition. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  32. Clifton DA, Bannister PR, Tarassenko L (2007) Visualisation of jet engine vibration characteristics for novelty detection. Proceedings of NCAF, London, UK

    Google Scholar 

  33. Nairac A, Townsend N, Carr R, King S, Cowley P, Tarassenko L (1999) Integr Comput-Aided Eng 6(1):53–65

    Google Scholar 

  34. Clifton DA, Bannister PR, Tarassenko L (2006) Application of an intuitive novelty metric for jet engine condition monitoring. In: Ali M, Dapoigny R (eds) Advances in applied artificial intelligence. Lecture Notes in Artificial Intelligence. Springer, Berlin Heidelberg New York 4031:1149–1158

    Chapter  Google Scholar 

  35. Clifton DA, Bannister PR, Tarassenko L (2007) A framework for novelty detection in jet engine vibration data. In: Garibaldi L, Surace S, Holford K (eds) Key engineering materials 347:305–312

    Google Scholar 

  36. Clifton DA, Bannister PR, Tarassenko L (2007) Novelty detection in large-vehicle turbochargers. In: Okuno HG, Ali M (eds) New trends in applied artificial intelligence. Lecture Notes in Computer Science, Springer, Berlin Heidelberg New York, 4750

    Google Scholar 

  37. Hayton P, Scholkopf B, Tarassenko L, Anuzis P (2000) Support vector novelty detection applied to jet engine vibration spectra. Proceedings of Neural Information Processing Systems

    Google Scholar 

  38. Wang L, Yin H (2004) Wavelet analysis in novelty detection for combustion image data. Proceedings of 10th CACSC, Liverpool, UK

    Google Scholar 

  39. Clifton LA, Yin H, Zhang Y (2006) Support vector machine in novelty detection for multi-channel combustion data. Proceedings of 3rd International Symposium on Neural Networks

    Google Scholar 

  40. Nairac A, Corbett-Clark T, Ripley R, Townsend N, Tarassenko L (1997) Choosing an appropriate model for novelty detection. Proceedings of IEE 5th International Conference on Artificial Neural Networks

    Google Scholar 

  41. Tax D, Duin R (1999) Pattern Recogn Lett 20:1191–1199

    Article  Google Scholar 

  42. Schölkopf B, Platt J, Shawe-Taylor J, Smola AJ, Williamson RC (2001) Neural Comput 13(7):1443–1471

    Article  MATH  Google Scholar 

  43. Bishop CM (1994) Novelty detection and neural network validation. Proceedings of IEE Conference on Vision and Image Signal Processing

    Google Scholar 

  44. Zadrozny B, Elkan C (2002) Transforming classifier scores into accurate multiclass probability estimates. Pro. ACM SIGKDD 694–699

    Google Scholar 

  45. Roberts SJ (1999) Proc IEE 146(3)

    Google Scholar 

  46. Roberts SJ (2000) Proc IEE Sci Meas Technol 147(6)

    Google Scholar 

  47. Medova EA, Kriacou MN (2001) Extremes in operational risk management. Technical report, Centre for Financial Research, Cambridge, U.K.

    Google Scholar 

  48. Fisher RA, Tippett LHC (1928) Proc Camb Philos Soc 24

    Google Scholar 

  49. Coles S (2001) An introduction to statistical modelling of extreme values. Springer, Berlin Heidelberg New York

    Google Scholar 

  50. Embrechts P, Kluppelberg C, Mikosch T (1997) Modelling extremal events. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  51. Rolls-Royce PLC (1996) The jet engine. Renault Printing, UK

    Google Scholar 

  52. Hayton P, Utete S, Tarassenko L (2003) QUOTE project technical report. University of Oxford, UK

    Google Scholar 

  53. Clifton DA (2005) Condition monitoring of gas-turbine engines. Transfer report. Department of Engineering Science, University of Oxford, UK

    Google Scholar 

  54. Bannister PR, Clifton DA, Tarassenko L (2007) Visualization of multi-channel sensor data from aero jet engines for condition monitoring and novelty detection. Proceedings of NCAF, Liverpool, UK

    Google Scholar 

  55. Khanna VK (2001) A study of the dynamics of laminar and turbulent fully and partially premixed flames. Virginia Polytechnic Institute and State University

    Google Scholar 

  56. Lieuwen TC (1999) Investigation of combustion instability mechanisms in premixed gas turbines. Georgia Institute of Technology

    Google Scholar 

  57. Ng WB, Syed KJ, Zhang Y (2005) Flame dynamics and structures in an industrial-scale gas turbine combustor. Experimental Thermal and Fluid Science 29:715–723

    Article  Google Scholar 

  58. Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics 41:909–996

    Article  MATH  MathSciNet  Google Scholar 

  59. Mallat SG (1989) A theory for multiresolution signal decomposition. IEEE Trans. Pattern Analysis and Machine Intelligence 11(7):674–693

    Article  MATH  Google Scholar 

  60. Guo H, Crossman JA, Murphey YL, Coleman M (2000) IEEE Trans Vehicular Technol 49(5):1650–1662

    Article  Google Scholar 

  61. Clifton LA, Yin H, Clifton DA, Zhang Y (2007) Combined support vector novelty detection for multi-channel combustion data. Proceedings of IEEE ICNSC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Clifton, D.A., Clifton, L.A., Bannister, P.R., Tarassenko, L. (2008). Automated Novelty Detection in Industrial Systems. In: Liu, Y., Sun, A., Loh, H.T., Lu, W.F., Lim, EP. (eds) Advances of Computational Intelligence in Industrial Systems. Studies in Computational Intelligence, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78297-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78297-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78296-4

  • Online ISBN: 978-3-540-78297-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics