Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 115))

The objectives of this Chapter are twofold: firstly to introduce DNA computation, and secondly to demonstrate how DNA computing can be applied to solve large, complex combinatorial problems, such as the optimal scheduling of a group of elevators servicing a number of floors in a multi-storey building.

Recently, molecular (or wet) computing has been widely researched not only within the context of solving NP-complete/NP-hard problems – which are the most difficult problems in NP – but also implementation by way of digital (silicon-based) computers [23]. We commence with a description of the basic concepts of ‘wet computation’, then present recent results for the efficient management of a group of elevators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adleman LM 1994 Molecular computation of solutions to combinatorial problems. Science, 266: 1021-1024.

    Article  Google Scholar 

  2. Adleman LM 1998 Computing with DNA. Scientific American, 279(2): 54-61.

    Article  Google Scholar 

  3. Amano M, Yamasaki M, Ikejima H 1995 The latest elevator group control sys-tem. In: Barary GC (ed.) Elevator Technology 6 - Proc. ELEVCON’95, March, Hong Kong. Intl. Association Elevator Engineers, Essex, UK: 88-95.

    Google Scholar 

  4. Amos M, Paun G, Rozenberg G, Salomaa A 2002 Topics in the Theory of DNA Computing. J. Theoretical Computer Science, 287: 3-38.

    Article  MATH  MathSciNet  Google Scholar 

  5. Barney G, dos Santos S 1985 Elevator Traffic Analysis, Design and Control (2nd ed). Peter Peregrinus, London, UK.

    Google Scholar 

  6. Barney G 2003 Elevator Traffic Handbook, Spon Press, London, UK.

    Google Scholar 

  7. Beielstein T, Ewald C-P, Markon S (2003) Optimal elevator group control by evolution strategies. In: Cantú-Paz E et al.(eds.) Proc. Genetic and Evolutionary Computation Conf.(GECCO’03), 12-16Julu, Chichago, IL: 1963-1974.

    Google Scholar 

  8. Bi X, Zhu C, Ye Q (2004) A GA-based approach to the multi-objective opti-mization problem in elevator group control system. Elevator World, June: 58-63.

    Google Scholar 

  9. Binti R, Bakar A, Watada J, Pedrycz W 2006 A DNA computing approach to data clustering based on mutual distance order. In: Watada J (ed.) Proc. 9th Czech-Japan Seminar on Data Analysis and Decision Making Under Uncertainty, 18-22 August, Kitakyusyu and Nagasakidate, Japan: 139-145.

    Google Scholar 

  10. Cortes P, Larraneta J, Onieva L 2004 Genetic algorithm for controllers in elevator groups: analysis and simulation during lunchpeak traffic. Applied Soft Computing, 4: 159-174.

    Article  Google Scholar 

  11. Crites R, Barto A 1998 Elevator group control using multiple reinforcement learning agents. Machine Learning, 33: 235-262.

    Article  MATH  Google Scholar 

  12. Eguchi T, Hirasawas K, Hu J, Markon S (2004) Elevator group supervisory control system using genetic network programming. In: Proc. IEEE Congress Evolutionary Computation (CEC’04), 19-23 June, Portland, OR. IEEE Press, Piscataway, NJ. 2: 1661-1667.

    Google Scholar 

  13. Eguchi T, Hirasawas K, Hu J, Markon S 2006 Elevator group supervisory control system using genetic network programming with functional localization. J. Advanced Computational Intelligence and Intelligent Informatics, 10(3): 243-244.

    Google Scholar 

  14. Eguchi T 2006 Study on optimization of elevator group supervisory control sys-tem using genetic network programming, PhD Dissertation, Graduate School of Information, Production and Systems, Waseda University, Kitakyushu, Japan.

    Google Scholar 

  15. Fujino A, Tobita T, Segawa K, Yoneda K, Togawa A 1997 An elevator group control system with floor-attribute control method and systems optimization using genetic algorithms. IEEE Trans. Industrial Electronics, 44(4): 546-552.

    Article  Google Scholar 

  16. Gudwin R, Gomide F, Netto M (1998) A fuzzy elevator group controller with linear context adaptation. In: Proc. Fuzzy-IEEE98, WCCI’98-IEEE - World Congress Computational Intelligence, 4-9 May, Anchorage, AL. IEEE Press, Piscataway, NJ: 481-486.

    Google Scholar 

  17. Ito Y, Fukusaki E 2004 DNA as a ‘nanomaterial’. J. Molecular Catalysis B: Enzymatic, 28: 155-166.

    Article  Google Scholar 

  18. Jeng D J-F, Watada J, Kim I (2007) Solving a real time scheduling problem based on DNA computing. Soft Computing J. (in press).

    Google Scholar 

  19. Kim C, Seong K, Lee-Kwang H, Kim JO 1998 Design and implementation of a fuzzy elevator group control system. IEEE Trans. System, Man and Cybernetics - PART-A, 28(3): 277-287.

    Article  Google Scholar 

  20. Kim I, Jeng D J-F, Watada J 2006 Redesigning subgroups in a personnel network based on DNA computing. Int. J. Innovative Computing, Information and Control, 2(4): 885-896.

    Google Scholar 

  21. Lee JY, Zhang B-T, Park TH 2003 Effectiveness of denaturation temperature gradient-polymerase chain reaction for biased DNA algorithms. Pre-Proc. 9th Intl. Meeting on DNA Based Computers, Madison: 208.

    Google Scholar 

  22. Lee JY, Shin S-Y, Park TH, Zhang B-T 2004 Solving traveling salesman problems with DNA molecules encoding numerical values. Biosystems, 78(1): 39-47.

    Article  Google Scholar 

  23. Lipton RJ 1995 DNA Solution of Hard Computational Problems. Science, 268: 542-545.

    Article  Google Scholar 

  24. Marmur J, Doty P 1962 Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Molecular Biology, 5: 109-118.

    Article  Google Scholar 

  25. Ouyang Q, Kaplan PD, Liu S, Libchaber A 1997 DNA solution of the maximal clique problem. Science 278: 446-449.

    Article  Google Scholar 

  26. Owenson GG, Amos M, Hodgson DA, Gibbsons A 2001 DNA-based logic. Soft Computing, 5(2): 102-105.

    MATH  Google Scholar 

  27. Paun GH, Rozenberg G, Salomaa A (1999) DNA Computing: New Computing Paradigms. Translated by Yokomori T (Japanese ed.) Springer-Verlag, Tokyo, Japan.

    Google Scholar 

  28. Powell BA, Sirag DJ, Witehall BL 2000 Artificial neural networks in elevator dispatching. Lift Report, 27(2): 44-57.

    Google Scholar 

  29. Rohani BAB, Watada J, Pedrycz W 2006 A DNA computing approach to data clustering based on mutual distance order. In: Watada J (ed.) Proc. 9th Czech-Japan Seminar on Data Analysis and Decision Making Under Uncertainty, 18-22 August, Kitakyusyu and Nagasakidate, Japan: 139-145.

    Google Scholar 

  30. SantaLucia JJr 1998 A unified view of plymer, dumbbell, and olygonucleotide DNA nearest-neighbor thermodynamics. Proc. National Academy of Sciences, 95: 1460-1465.

    Article  Google Scholar 

  31. van Noort D 2004 Towards a re-programmable DNA computer. In: Chen J, Reif JH (eds.) Proc. 9th Intl. Workshop DNA Based Computers (DNA9), Lecture Notes in Computer Science 2943, Springer-Verlag, Berlin: 190-196.

    Google Scholar 

  32. Wan H, Liu C, Liu H 2003 NN elevator group-control method. Elevator World, 2: 148-154.

    Google Scholar 

  33. Watada J, Kojima S, Ueda S, Ono O 2006 A DNA computing approach to optimal decision problem. Int. J. Innovative Computing, Information and Control, 2(1): 273-282.

    Google Scholar 

  34. Wetmur JG 1991 DNA probes: applications of the principles of nucleic acid hybridization. Critical Reviews in Biochemistry and Molecular BIology, 26(3): 227-259.

    Article  Google Scholar 

  35. Winfree OE, Lin F, Wenzler LA, Seeman NC 1998 Design and self-assembly of two-dimensional DNA crystals. Nature, 394(6693): 539-549.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Watada, J. (2008). DNA Computing and its Application. In: Fulcher, J., Jain, L.C. (eds) Computational Intelligence: A Compendium. Studies in Computational Intelligence, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78293-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78293-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78292-6

  • Online ISBN: 978-3-540-78293-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics