Advertisement

Chemokines

  • Andreas Hippe
  • Bernhard HomeyEmail author
  • Anja Mueller-Homey
Chapter
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 180)

Abstract

Tumor growth is restricted to approximately 2 μm diameters by simple dissociation of nutrients and oxygen. Hence, tumors require the formation of new blood vessels for further growth progression. This process is referred to as tumor neo-angiogenesis. The process of tumor neo-angiogenesis is directed by complex bidirectional interactions between the tumor and the vessels, and creates a favorable microenvironment for angiogenesis. The tumor vessel system not only facilitates tumor growth by providing nutrients and oxygen but also functions as a convenient route for metastasis.

A group of small cytokine-like molecules called chemokines have been shown to participate in angiogenesis under homeostatic and neoplastic conditions. This review summarizes their role in tumor-associated angiogenesis.

Keywords

Vascular Endothelial Growth Factor Melanoma Cell Human Umbilical Vein Endothelial Cell Chemokine Receptor Mural Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbadessa G, Vogiatzi P, Rimassa L, Claudio PP (2007) Antiangiogenic drugs currently used for colorectal cancer: what other pathways can we target to prolong responses? Drug News Perspect 20:307–313PubMedCrossRefGoogle Scholar
  2. Addison CL, Daniel TO, Burdick MD, Liu H, Ehlert JE, Xue YY, Buechi L, Walz A, Richmond A, Strieter RM (2000) The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol 165:5269–5277PubMedGoogle Scholar
  3. Arenberg DA, Kunkel SL, Polverini PJ, Glass M, Burdick MD, Strieter RM (1996a) Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J Clin Invest 97:2792–2802PubMedCrossRefGoogle Scholar
  4. Arenberg DA, Kunkel SL, Polverini PJ, Morris SB, Burdick MD, Glass MC, Taub DT, Iannettoni MD, Whyte RI, Strieter RM (1996b) Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J Exp Med 184:981–992PubMedCrossRefGoogle Scholar
  5. Arenberg DA, Zlotnick A, Strom SR, Burdick MD, Strieter RM (2001) The murine CC chemokine, 6C-kine, inhibits tumor growth and angiogenesis in a human lung cancer SCID mouse model. Cancer Immunol Immunother 49:587–592PubMedCrossRefGoogle Scholar
  6. Auerbach R, Kubai L, Sidky Y (1976) Angiogenesis induction by tumors, embryonic tissues, and lymphocytes. Cancer Res 36:3435–3440PubMedGoogle Scholar
  7. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular biology of the cell. Garland Science, LondonGoogle Scholar
  8. Balentien E, Mufson BE, Shattuck RL, Derynck R, Richmond A (1991) Effects of MGSA/GRO alpha on melanocyte transformation. Oncogene 6:1115–1124PubMedGoogle Scholar
  9. Bart RS, Porzio NR, Kopf AW, Vilcek JT, Cheng EH, Farcet Y (1980) Inhibition of growth of B16 murine malignant melanoma by exogenous interferon. Cancer Res 40:614–619PubMedGoogle Scholar
  10. Belperio JA, Keane MP, Arenberg DA, Addison CL, Ehlert JE, Burdick MD, Strieter RM (2000) CXC chemokines in angiogenesis. J Leukoc Biol 68:1–8PubMedGoogle Scholar
  11. Ben-Baruch A (2003) Host microenvironment in breast cancer development: inflammatory cells, cytokines and chemokines in breast cancer progression: reciprocal tumor-microenvironment interactions. Breast Cancer Res 5:31–36PubMedCrossRefGoogle Scholar
  12. Berger O, Gan X, Gujuluva C, Burns AR, Sulur G, Stins M, Way D, Witte M, Weinand M, Said J, Kim KS, Taub D, Graves MC, Fiala M (1999) CXC and CC chemokine receptors on coronary and brain endothelia. Mol Med 5:795–805PubMedGoogle Scholar
  13. Bernardini G, Ribatti D, Spinetti G, Morbidelli L, Ziche M, Santoni A, Capogrossi MC, Napolitano M (2003) Analysis of the role of chemokines in angiogenesis. J Immunol Methods 273: 83–101PubMedCrossRefGoogle Scholar
  14. Bernardini G, Spinetti G, Ribatti D, Camarda G, Morbidelli L, Ziche M, Santoni A, Capogrossi MC, Napolitano M (2000) I-309 binds to and activates endothelial cell functions and acts as an angiogenic molecule in vivo. Blood 96:4039–4045PubMedGoogle Scholar
  15. Bonacchi A, Romagnani P, Romanelli RG, Efsen E, Annunziato F, Lasagni L, Francalanci M, Serio M, Laffi G, Pinzani M, Gentilini P, Marra F (2001) Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J Biol Chem 276:9945–9954PubMedCrossRefGoogle Scholar
  16. Bordoni R, Fine R, Murray D, Richmond A (1990) Characterization of the role of melanoma growth stimulatory activity (MGSA) in the growth of normal melanocytes, nevocytes, and malignant melanocytes. J Cell Biochem 44:207–219PubMedCrossRefGoogle Scholar
  17. Bos JL (1989) ras oncogenes in human cancer: a review. Cancer Res 49:4682–4689PubMedGoogle Scholar
  18. Bouck N (1990) Tumor angiogenesis: the role of oncogenes and tumor suppressor genes. Cancer Cells 2:179–185PubMedGoogle Scholar
  19. Cao X, Zhang W, Wan T, He L, Chen T, Yuan Z, Ma S, Yu Y, Chen G (2000) Molecular cloning and characterization of a novel CXC chemokine macrophage inflammatory protein-2 gamma chemoattractant for human neutrophils and dendritic cells. J Immunol 165:2588–2595PubMedGoogle Scholar
  20. Carney DN (1988) Cancers of the lungs. In: Fishman AP (ed) Pulmonary diseases and disorders. McGraw-Hill, New York, pp 1885–2068Google Scholar
  21. Carulli MT, Ong VH, Ponticos M, Shiwen X, Abraham DJ, Black CM, Denton CP (2005) Chemokine receptor CCR2 expression by systemic sclerosis fibroblasts: evidence for autocrine regulation of myofibroblast differentiation. Arthritis Rheum 52:3772–3782PubMedCrossRefGoogle Scholar
  22. Charo IF, Myers SJ, Herman A, Franci C, Connolly AJ, Coughlin SR (1994) Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc Natl Acad Sci U S A 91:2752–2756PubMedCrossRefGoogle Scholar
  23. Chavey C, Bibeau F, Gourgou-Bourgade S, Burlinchon S, Boissiere F, Laune D, Roques S, Lazennec G (2007) Oestrogen receptor negative breast cancers exhibit high cytokine content. Breast Cancer Res 9:R15PubMedCrossRefGoogle Scholar
  24. Chiarugi V, Magnelli L, Gallo O (1998) Cox-2, iNOS and p53 as play-makers of tumor angiogenesis (review). Int J Mol Med 2:715–719PubMedGoogle Scholar
  25. Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, Lin W, Boyd JG, Moser B, Wood DE, Sahagan BG, Neote K (1998) Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med 187:2009–2021PubMedCrossRefGoogle Scholar
  26. De Clercq E (2003) The bicyclam AMD3100 story. Nat Rev Drug Discov 2:581–587PubMedCrossRefGoogle Scholar
  27. De Paepe B, De Bleecker JL (2005) Beta-chemokine receptor expression in idiopathic inflammatory myopathies. Muscle Nerve 31:621–627PubMedCrossRefGoogle Scholar
  28. Devine SM, Flomenberg N, Vesole DH, Liesveld J, Weisdorf D, Badel K, Calandra G, DiPersio JF (2004) Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin’s lymphoma. J Clin Oncol 22:1095–1102PubMedCrossRefGoogle Scholar
  29. Engerman RL, Pfaffenbach D, Davis MD (1967) Cell turnover of capillaries. Lab Invest 17:738–743PubMedGoogle Scholar
  30. Fan X, Patera AC, Pong-Kennedy A, Deno G, Gonsiorek W, Manfra DJ, Vassileva G, Zeng M, Jackson C, Sullivan L, Sharif-Rodriguez W, Opdenakker G, Van Damme J, Hedrick JA, Lundell D, Lira SA, Hipkin RW (2007) Murine CXCR1 is a functional receptor for GCP-2/CXCL6 and interleukin-8/CXCL8. J Biol Chem 282:11658–11666PubMedCrossRefGoogle Scholar
  31. Feng Y, Broder CC, Kennedy PE, Berger EA (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877PubMedCrossRefGoogle Scholar
  32. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31PubMedCrossRefGoogle Scholar
  33. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934PubMedGoogle Scholar
  34. Fong AM, Erickson HP, Zachariah JP, Poon S, Schamberg NJ, Imai T, Patel DD (2000) Ultrastructure and function of the fractalkine mucin domain in CX(3)C chemokine domain presentation. J Biol Chem 275:3781–3786PubMedCrossRefGoogle Scholar
  35. Freund A, Chauveau C, Brouillet JP, Lucas A, Lacroix M, Licznar A, Vignon F, Lazennec G (2003) IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells. Oncogene 22:256–265PubMedCrossRefGoogle Scholar
  36. Garcia-Lopez MA, Sanchez-Madrid F, Rodriguez-Frade JM, Mellado M, Acevedo A, Garcia MI, Albar JP, Martinez C, Marazuela M (2001) CXCR3 chemokine receptor distribution in normal and inflamed tissues: expression on activated lymphocytes, endothelial cells, and dendritic cells. Lab Invest 81:409–418PubMedGoogle Scholar
  37. Garlanda C, Dejana E (1997) Heterogeneity of endothelial cells. Specific markers. Arterioscler Thromb Vasc Biol 17:1193–1202PubMedGoogle Scholar
  38. Geminder H, Sagi-Assif O, Goldberg L, Meshel T, Rechavi G, Witz IP, Ben-Baruch A (2001) A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol 167:4747–4757PubMedGoogle Scholar
  39. Giorgini S, Trisciuoglio D, Gabellini C, Desideri M, Castellini L, Colarossi C, Zangemeister-Wittke U, Zupi G, Del Bufalo D (2007) Modulation of bcl-xL in tumor cells regulates angiogenesis through CXCL8 expression. Mol Cancer Res 5:761–771PubMedCrossRefGoogle Scholar
  40. Goede V, Brogelli L, Ziche M, Augustin HG (1999) Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. Int J Cancer 82:765–770PubMedCrossRefGoogle Scholar
  41. Gutman M, Singh RK, Xie K, Bucana CD, Fidler IJ (1995) Regulation of interleukin-8 expression in human melanoma cells by the organ environment. Cancer Res 55:2470–2475PubMedGoogle Scholar
  42. Harris ED Jr (1976) Recent insights into the pathogenesis of the proliferative lesion in rheumatoid arthritis. Arthritis Rheum 19:68–72PubMedCrossRefGoogle Scholar
  43. Harris RE (2007) Cyclooxygenase-2 (cox-2) and the inflammogenesis of cancer. Subcell Biochem 42:93–126PubMedCrossRefGoogle Scholar
  44. Hedrick JA, Zlotnik A (1997) Identification and characterization of a novel beta chemokine containing six conserved cysteines. J Immunol 159:1589–1593PubMedGoogle Scholar
  45. Hromas R, Broxmeyer HE, Kim C, Nakshatri H, Christopherson K 2nd, Azam M, Hou YH (1999) Cloning of BRAK, a novel divergent CXC chemokine preferentially expressed in normal versus malignant cells. Biochem Biophys Res Commun 255:703–706PubMedCrossRefGoogle Scholar
  46. Huang S, Mills L, Mian B, Tellez C, McCarty M, Yang XD, Gudas JM, Bar-Eli M (2002) Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol 161:125–134PubMedGoogle Scholar
  47. Hwang J, Kim CW, Son KN, Han KY, Lee KH, Kleinman HK, Ko J, Na DS, Kwon BS, Gho YS, Kim J (2004) Angiogenic activity of human CC chemokine CCL15 in vitro and in vivo. FEBS Lett 570:47–51PubMedCrossRefGoogle Scholar
  48. Imaizumi T, Yoshida H, Satoh K (2004) Regulation of CX3CL1/fractalkine expression in endothelial cells. J Atheroscler Thromb 11:15–21PubMedGoogle Scholar
  49. Jenh CH, Cox MA, Kaminski H, Zhang M, Byrnes H, Fine J, Lundell D, Chou CC, Narula SK, Zavodny PJ (1999) Cutting edge: species specificity of the CC chemokine 6Ckine signaling through the CXC chemokine receptor CXCR3: human 6Ckine is not a ligand for the human or mouse CXCR3 receptors. J Immunol 162: 3765–3769PubMedGoogle Scholar
  50. John AR, Bramhall SR, Eggo MC (2008) Antiangiogenic therapy and surgical practice. Br J Surg 95:281–293PubMedCrossRefGoogle Scholar
  51. Kim S, Mendoza A, Midura B et al (2005) Inhibition of murine osteosarcoma lung metastases using the CXCR4 antagonist, CTCE-9908. In Proceedings of the 96th AACR annual meeting. Anaheim, CA.Google Scholar
  52. Koga M, Kai H, Egami K, Murohara T, Ikeda A, Yasuoka S, Egashira K, Matsuishi T, Kai M, Kataoka Y, Kuwano M, Imaizumi T (2008) Mutant MCP-1 therapy inhibits tumor angiogenesis and growth of malignant melanoma in mice. Biochem Biophys Res Commun 365:279–284PubMedCrossRefGoogle Scholar
  53. Kriehuber E, Breiteneder-Geleff S, Groeger M, Soleiman A, Schoppmann SF, Stingl G, Kerjaschki D, Maurer D (2001) Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 194:797–808PubMedCrossRefGoogle Scholar
  54. Kurth I, Willimann K, Schaerli P, Hunziker T, Clark-Lewis I, Moser B (2001) Monocyte selectivity and tissue localization suggests a role for breast and kidney-expressed chemokine (BRAK) in macrophage development. J Exp Med 194:855–861PubMedCrossRefGoogle Scholar
  55. Kyndi M, Sorensen FB, Knudsen H, Overgaard M, Nielsen HM, Overgaard J (2008) Estrogen receptor, progesterone receptor, HER-2, and response to postmastectomy radiotherapy in high-risk breast cancer: the Danish Breast Cancer Cooperative Group. J Clin Oncol 26(9):1419–1426PubMedCrossRefGoogle Scholar
  56. Lasagni L, Francalanci M, Annunziato F, Lazzeri E, Giannini S, Cosmi L, Sagrinati C, Mazzinghi B, Orlando C, Maggi E, Marra F, Romagnani S, Serio M, Romagnani P (2003) An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 197:1537–1549PubMedCrossRefGoogle Scholar
  57. Lee SJ, Namkoong S, Kim YM, Kim CK, Lee H, Ha KS, Chung HT, Kwon YG (2006) Fractalkine stimulates angiogenesis by activating the Raf-1/MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways. Am J Physiol Heart Circ Physiol 291:H2836–H2846PubMedCrossRefGoogle Scholar
  58. Leibovich SJ, Wiseman DM (1988) Macrophages, wound repair and angiogenesis. Prog Clin Biol Res 266:131–145PubMedGoogle Scholar
  59. Lin Y, Huang R, Chen L, Li S, Shi Q, Jordan C, Huang RP (2004) Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays. Int J Cancer 109:507–515PubMedCrossRefGoogle Scholar
  60. Martins-Green M, Hanafusa H (1997) The 9E3/CEF4 gene and its product the chicken chemotactic and angiogenic factor (cCAF): potential roles in wound healing and tumor development. Cytokine Growth Factor Rev 8:221–232PubMedCrossRefGoogle Scholar
  61. Mian BM, Dinney CP, Bermejo CE, Sweeney P, Tellez C, Yang XD, Gudas JM, McConkey DJ, Bar-Eli M (2003) Fully human anti-interleukin 8 antibody inhibits tumor growth in orthotopic bladder cancer xenografts via down-regulation of matrix metalloproteases and nuclear factor-kappaB. Clin Cancer Res 9:3167–3175PubMedGoogle Scholar
  62. Miller MD, Krangel MS (1992) Biology and biochemistry of the chemokines: a family of chemotactic and inflammatory cytokines. Crit Rev Immunol 12:17–46PubMedGoogle Scholar
  63. Minna JD (1991) Neoplasms of the lung. In: Isselbacher KJ (ed) Principles of internal medicine. McGraw-Hill, New York, pp 1102–1110Google Scholar
  64. Mrowietz U, Schwenk U, Maune S, Bartels J, Kupper M, Fichtner I, Schroder JM, Schadendorf D (1999) The chemokine RANTES is secreted by human melanoma cells and is associated with enhanced tumour formation in nude mice. Br J Cancer 79:1025–1031PubMedCrossRefGoogle Scholar
  65. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56PubMedCrossRefGoogle Scholar
  66. Pablos JL, Amara A, Bouloc A, Santiago B, Caruz A, Galindo M, Delaunay T, Virelizier JL, Arenzana-Seisdedos F (1999) Stromal-cell derived factor is expressed by dendritic cells and endothelium in human skin. Am J Pathol 155:1577–1586PubMedGoogle Scholar
  67. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108PubMedCrossRefGoogle Scholar
  68. Parmar S, Platanias LC (2003) Interferons: mechanisms of action and clinical applications. Curr Opin Oncol 15:431–439PubMedCrossRefGoogle Scholar
  69. Payne AS, Cornelius LA (2002) The role of chemokines in melanoma tumor growth and metastasis. J Invest Dermatol 118:915–922PubMedCrossRefGoogle Scholar
  70. Pivarcsi A, Muller A, Hippe A, Rieker J, van Lierop A, Steinhoff M, Seeliger S, Kubitza R, Pippirs U, Meller S, Gerber PA, Liersch R, Buenemann E, Sonkoly E, Wiesner U, Hoffmann TK, Schneider L, Piekorz R, Enderlein E, Reifenberger J, Rohr UP, Haas R, Boukamp P, Haase I, Nurnberg B, Ruzicka T, Zlotnik A, Homey B (2007) Tumor immune escape by the loss of homeostatic chemokine expression. Proc Natl Acad Sci U S A 104:19055–19060PubMedCrossRefGoogle Scholar
  71. Polverini PJ (1995) The pathophysiology of angiogenesis. Crit Rev Oral Biol Med 6:230–247PubMedCrossRefGoogle Scholar
  72. Richmond A, Thomas HG (1986) Purification of melanoma growth stimulatory activity. J Cell Physiol 129:375–384PubMedCrossRefGoogle Scholar
  73. Ryu J, Lee CW, Hong KH, Shin JA, Lim SH, Park CS, Shim J, Nam KB, Choi KJ, Kim YH, Han KH (2007) Activation of Fractalkine/CX3CR1 by Vascular Endothelial Cells Induces Angiogenesis through VEGF-A/KDR and Reverses Hindlimb Ischemia. Cardiovasc Res 78(2):333–340PubMedCrossRefGoogle Scholar
  74. Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, Oppenheim JJ, Murphy WJ (2000) Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood 96:34–40PubMedGoogle Scholar
  75. Salcedo R, Young HA, Ponce ML, Ward JM, Kleinman HK, Murphy WJ, Oppenheim JJ (2001) Eotaxin (CCL11) induces in vivo angiogenic responses by human CCR3+ endothelial cells. J Immunol 166:7571–7578PubMedGoogle Scholar
  76. Schadendorf D, Moller A, Algermissen B, Worm M, Sticherling M, Czarnetzki BM (1993) IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. J Immunol 151:2667–2675PubMedGoogle Scholar
  77. Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A, Bernasconi S, Saccani S, Nebuloni M, Vago L, Mantovani A, Melillo G, Sica A (2003) Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 198:1391–1402PubMedCrossRefGoogle Scholar
  78. Shattuck-Brandt RL, Richmond A (1997) Enhanced degradation of I-kappaB alpha contributes to endogenous activation of NF-kappaB in Hs294T melanoma cells. Cancer Res 57:3032–3039PubMedGoogle Scholar
  79. Shellenberger TD, Wang M, Gujrati M, Jayakumar A, Strieter RM, Burdick MD, Ioannides CG, Efferson CL, El-Naggar AK, Roberts D, Clayman GL, Frederick MJ (2004) BRAK/CXCL14 is a potent inhibitor of angiogenesis and a chemotactic factor for immature dendritic cells. Cancer Res 64:8262–8270PubMedCrossRefGoogle Scholar
  80. Skoog L, Humla S, Axelsson M, Frost M, Norman A, Nordenskjold B, Wallgren A (1987) Estrogen receptor levels and survival of breast cancer patients. A study on patients participating in randomized trials of adjuvant therapy. Acta Oncol 26:95–100PubMedCrossRefGoogle Scholar
  81. Sleeman MA, Fraser JK, Murison JG, Kelly SL, Prestidge RL, Palmer DJ, Watson JD, Kumble KD (2000) B cell- and monocyte-activating chemokine (BMAC), a novel non-ELR alpha-chemokine. Int Immunol 12:677–689PubMedCrossRefGoogle Scholar
  82. Smith DR, Polverini PJ, Kunkel SL, Orringer MB, Whyte RI, Burdick MD, Wilke CA, Strieter RM (1994) Inhibition of interleukin 8 attenuates angiogenesis in bronchogenic carcinoma. J Exp Med 179:1409–1415PubMedCrossRefGoogle Scholar
  83. Soto H, Wang W, Strieter RM, Copeland NG, Gilbert DJ, Jenkins NA, Hedrick J, Zlotnik A (1998) The CC chemokine 6Ckine binds the CXC chemokine receptor CXCR3. Proc Natl Acad Sci U S A 95:8205–8210PubMedCrossRefGoogle Scholar
  84. Sparmann A, Bar-Sagi D (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6:447–458PubMedCrossRefGoogle Scholar
  85. Strasly M, Doronzo G, Capello P, Valdembri D, Arese M, Mitola S, Moore P, Alessandri G, Giovarelli M, Bussolino F (2004) CCL16 activates an angiogenic program in vascular endothelial cells. Blood 103:40–49PubMedCrossRefGoogle Scholar
  86. Strieter RM, Polverini PJ, Arenberg DA, Kunkel SL (1995a) The role of CXC chemokines as regulators of angiogenesis. Shock 4:155–160PubMedCrossRefGoogle Scholar
  87. Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van Damme J, Walz A, Marriott D et al (1995b) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270:27348–27357PubMedCrossRefGoogle Scholar
  88. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida N, Nishikawa S, Kishimoto T, Nagasawa T (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393:591–594PubMedCrossRefGoogle Scholar
  89. Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK (2002) Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 62:1832–1837PubMedGoogle Scholar
  90. Takenaga M, Tamamura H, Hiramatsu K, Nakamura N, Yamaguchi Y, Kitagawa A, Kawai S, Nakashima H, Fujii N, Igarashi R (2004) A single treatment with microcapsules containing a CXCR4 antagonist suppresses pulmonary metastasis of murine melanoma. Biochem Biophys Res Commun 320:226–232PubMedCrossRefGoogle Scholar
  91. Tamamura H, Hori A, Kanzaki N, Hiramatsu K, Mizumoto M, Nakashima H, Yamamoto N, Otaka A, Fujii N (2003) T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer. FEBS Lett 550:79–83PubMedCrossRefGoogle Scholar
  92. Tannock IF, Hayashi S (1972) The proliferation of capillary endothelial cells. Cancer Res 32:77–82PubMedGoogle Scholar
  93. Varney ML, Johansson SL, Singh RK (2006) Distinct expression of CXCL8 and its receptors CXCR1 and CXCR2 and their association with vessel density and aggressiveness in malignant melanoma. Am J Clin Pathol 125:209–216PubMedGoogle Scholar
  94. Volin MV, Joseph L, Shockley MS, Davies PF (1998) Chemokine receptor CXCR4 expression in endothelium. Biochem Biophys Res Commun 242:46–53PubMedCrossRefGoogle Scholar
  95. Volin MV, Woods JM, Amin MA, Connors MA, Harlow LA, Koch AE (2001) Fractalkine: a novel angiogenic chemokine in rheumatoid arthritis. Am J Pathol 159:1521–1530PubMedGoogle Scholar
  96. Williams CS, Mann M, DuBois RN (1999) The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18:7908–7916PubMedCrossRefGoogle Scholar
  97. Yaal-Hahoshen N, Shina S, Leider-Trejo L, Barnea I, Shabtai EL, Azenshtein E, Greenberg I, Keydar I, Ben-Baruch A (2006) The chemokine CCL5 as a potential prognostic factor predicting disease progression in stage II breast cancer patients. Clin Cancer Res 12:4474–4480PubMedCrossRefGoogle Scholar
  98. Yan L, Anderson GM, DeWitte M, Nakada MT (2006) Therapeutic potential of cytokine and chemokine antagonists in cancer therapy. Eur J Cancer 42:793–802PubMedCrossRefGoogle Scholar
  99. Yang XD, Corvalan JR, Wang P, Roy CM, Davis CG (1999) Fully human anti-interleukin-8 monoclonal antibodies: potential therapeutics for the treatment of inflammatory disease states. J Leukoc Biol 66:401–410PubMedGoogle Scholar
  100. Yao PL, Lin YC, Wang CH, Huang YC, Liao WY, Wang SS, Chen JJ, Yang PC (2005) Autocrine and paracrine regulation of interleukin-8 expression in lung cancer cells. Am J Respir Cell Mol Biol 32:540–547PubMedCrossRefGoogle Scholar
  101. You JJ, Yang CH, Huang JS, Chen MS, Yang CM (2007) Fractalkine, a CX3C chemokine, as a mediator of ocular angiogenesis. Invest Ophthalmol Vis Sci 48:5290–5298PubMedCrossRefGoogle Scholar
  102. Zeelenberg IS, Ruuls-Van Stalle L, Roos E (2001) Retention of CXCR4 in the endoplasmic reticulum blocks dissemination of a T cell hybridoma. J Clin Invest 108:269–277PubMedGoogle Scholar
  103. Zhu YM, Bagstaff SM, Woll PJ (2006) Production and upregulation of granulocyte chemotactic protein-2/CXCL6 by IL-1beta and hypoxia in small cell lung cancer. Br J Cancer 94:1936–1941PubMedCrossRefGoogle Scholar
  104. Zhu YM, Webster SJ, Flower D, Woll PJ (2004) Interleukin-8/CXCL8 is a growth factor for human lung cancer cells. Br J Cancer 91: 1970–1976PubMedCrossRefGoogle Scholar
  105. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Andreas Hippe
  • Bernhard Homey
    • 1
    Email author
  • Anja Mueller-Homey
  1. 1.Department of DermatologyHeinrich-Heine-UniversityDüsseldorfGermany

Personalised recommendations