Antibody-Based Vascular Tumor Targeting

  • Christoph Schliemann
  • Dario Neri
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 180)


The inhibition of angiogenesis represents a major step toward a more selective and better-tolerated therapy of cancer. An alternative way to take advantage of a tumor’s absolute dependence on a functional neovasculature is illustrated by the strategy of “antibody-based vascular tumor targeting.” This technology aims at the selective delivery of bioactive molecules to the tumor site by their conjugation to a carrier antibody reactive with a tumor-associated vascular antigen. A number of high-affinity monoclonal antibodies are nowadays available which have demonstrated a remarkable ability to selectively localize to the tumor vasculature. Indeed, some of them have already progressed from preclinical animal experiments to clinical studies in patients with cancer, acting as vehicles for the site-specific pharmacodelivery of proinflammatory cytokines or radionuclides.

In this chapter, we present a selection of well-characterized markers of angiogenesis which have proven to be suitable targets for antibody-based vascular targeting approaches. Furthermore, different transcriptomic and proteomic methodologies for the discovery of novel vascular tumor markers are described. In the last two sections, we focus on the discussion of antibody-based vascular tumor targeting strategies for imaging and therapy applications in oncology.


Vascular Target Extra Domain Angiogenic Blood Vessel Antibody Derivative Subendothelial Extracellular Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from the Swiss National Science Foundation, the Gebert-Ruef Foundation, the Schweizer Krebsliga, the ETH Zurich and the European Union projects STROMA, FLUORMMPI and IMMUNOPDT is gratefully acknowledged. C.S. is recipient of a postdoctoral scholarship from the Deutsche Krebshilfe.


  1. Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, Marks JD, Weiner LM (2001) High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 61:4750–4755PubMedGoogle Scholar
  2. Adams GP, Tai MS, McCartney JE, Marks JD, Stafford WF 3rd, Houston LL, Huston JS, Weiner LM (2006) Avidity-mediated enhancement of in vivo tumor targeting by single-chain Fv dimers. Clin Cancer Res 12:1599–1605CrossRefPubMedGoogle Scholar
  3. Balza E, Castellani P, Zijlstra A, Neri D, Zardi L, Siri A (2001) Lack of specificity of endoglin expression for tumor blood vessels. Int J Cancer 94:579–585CrossRefPubMedGoogle Scholar
  4. Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ (2005) Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol 23:4591–4601CrossRefPubMedGoogle Scholar
  5. Berndorff D, Borkowski S, Sieger S, Rother A, Friebe M, Viti F, Hilger CS, Cyr JE, Dinkelborg LM (2005) Radioimmunotherapy of solid tumors by targeting extra domain B fibronectin: identification of the best-suited radioimmunoconjugate. Clin Cancer Res 11:7053s–7063sCrossRefPubMedGoogle Scholar
  6. Birchler MT, Milisavlijevic D, Pfaltz M, Neri D, Odermatt B, Schmid S, Stoeckli SJ (2003) Expression of the extra domain B of fibronectin, a marker of angiogenesis, in head and neck tumors. Laryngoscope 113:1231–1237CrossRefPubMedGoogle Scholar
  7. Birchler MT, Thuerl C, Schmid D, Neri D, Waibel R, Schubiger A, Stoeckli SJ, Schmid S, Goerres GW (2007) Immunoscintigraphy of patients with head and neck carcinomas, with an anti-angiogenetic antibody fragment. Otolaryngol Head Neck Surg 136:543–548CrossRefPubMedGoogle Scholar
  8. Borsi L, Carnemolla B, Nicolo G, Spina B, Tanara G, Zardi L (1992) Expression of different tenascin isoforms in normal, hyperplastic and neoplastic human breast tissues. Int J Cancer 52:688–692CrossRefPubMedGoogle Scholar
  9. Borsi L, Balza E, Bestagno M, Castellani P, Carnemolla B, Biro A, Leprini A, Sepulveda J, Burrone O, Neri D, Zardi L (2002) Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer 102:75–85CrossRefPubMedGoogle Scholar
  10. Borsi L, Balza E, Carnemolla B, Sassi F, Castellani P, Berndt A, Kosmehl H, Biro A, Siri A, Orecchia P, Grassi J, Neri D, Zardi L (2003) Selective targeted delivery of TNFalpha to tumor blood vessels. Blood 102:4384–4392CrossRefPubMedGoogle Scholar
  11. Brack SS, Silacci M, Birchler M, Neri D (2006) Tumor-targeting properties of novel antibodies specific to the large isoform of tenascin-C. Clin Cancer Res 12:3200–3208CrossRefPubMedGoogle Scholar
  12. Bredow S, Lewin M, Hofmann B, Marecos E, Weissleder R (2000) Imaging of tumour neovasculature by targeting the TGF-beta binding receptor endoglin. Eur J Cancer 36:675–681CrossRefPubMedGoogle Scholar
  13. Bremer C, Ntziachristos V, Weissleder R (2003) Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol 13:231–243PubMedGoogle Scholar
  14. Burrows FJ, Thorpe PE (1993) Eradication of large solid tumors in mice with an immunotoxin directed against tumor vasculature. Proc Natl Acad Sci USA 90:8996–9000CrossRefPubMedGoogle Scholar
  15. Burrows FJ, Derbyshire EJ, Tazzari PL, Amlot P, Gazdar AF, King SW, Letarte M, Vitetta ES, Thorpe PE (1995) Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy. Clin Cancer Res 1:1623–1634PubMedGoogle Scholar
  16. Cai W, Wu Y, Chen K, Cao Q, Tice DA, Chen X (2006) In vitro and in vivo characterization of 64cu-labeled abegrintm, a humanized monoclonal antibody against integrin {alpha}v{beta}3. Cancer Res 66:9673–9681CrossRefPubMedGoogle Scholar
  17. Carnemolla B, Balza E, Siri A, Zardi L, Nicotra MR, Bigotti A, Natali PG (1989) A tumor-associated fibronectin isoform generated by alternative splicing of messenger RNA precursors. J Cell Biol 108:1139–1148CrossRefPubMedGoogle Scholar
  18. Carnemolla B, Neri D, Castellani P, Leprini A, Neri G, Pini A, Winter G, Zardi L (1996) Phage antibodies with pan-species recognition of the oncofoetal angiogenesis marker fibronectin ED-B domain. Int J Cancer 68:397–405CrossRefPubMedGoogle Scholar
  19. Carnemolla B, Borsi L, Balza E, Castellani P, Meazza R, Berndt A, Ferrini S, Kosmehl H, Neri D, Zardi L (2002) Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood 99:1659–1665CrossRefPubMedGoogle Scholar
  20. Castellani P, Viale G, Dorcaratto A, Nicolo G, Kaczmarek J, Querze G, Zardi L (1994) The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int J Cancer 59:612–618CrossRefPubMedGoogle Scholar
  21. Castronovo V, Waltregny D, Kischel P, Roesli C, Elia G, Rybak JN, Neri D (2006) A chemical proteomics approach for the identification of accessible antigens expressed in human kidney cancer. Mol Cell Proteomics 5:2083–2091CrossRefPubMedGoogle Scholar
  22. Chang SS, O’Keefe DS, Bacich DJ, Reuter VE, Heston WD, Gaudin PB (1999) Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin Cancer Res 5:2674–2681PubMedGoogle Scholar
  23. Chari RV (2008) Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 41:98–107CrossRefPubMedGoogle Scholar
  24. Christian S, Pilch J, Akerman ME, Porkka K, Laakkonen P, Ruoslahti E (2003) Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol 163:871–878CrossRefPubMedGoogle Scholar
  25. Cohen J (1995) IL-12 deaths: explanation and a puzzle. Science 270:908CrossRefPubMedGoogle Scholar
  26. Cooke SP, Boxer GM, Lawrence L, Pedley RB, Spencer DI, Begent RH, Chester KA (2001) A strategy for antitumor vascular therapy by targeting the vascular endothelial growth factor: receptor complex. Cancer Res 61:3653–3659PubMedGoogle Scholar
  27. Dela Cruz JS, Huang TH, Penichet ML, Morrison SL (2004) Antibody-cytokine fusion proteins: innovative weapons in the war against cancer. Clin Exp Med 4:57–64CrossRefPubMedGoogle Scholar
  28. Dennis MS, Jin H, Dugger D, Yang R, McFarland L, Ogasawara A, Williams S, Cole MJ, Ross S, Schwall R (2007) Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res 67:254–261CrossRefPubMedGoogle Scholar
  29. Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, DeBlanc RL, Gearing RP, Bovee TD, Siegall CB, Francisco JA, Wahl AF, Meyer DL, Senter PD (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21:778–784CrossRefPubMedGoogle Scholar
  30. Dumelin CE, Trüssel S, Buller F, Trachsel E, Bootz F, Zhang Y, Manocci L, Beck SC, Drumea-Mirancea M, Seeliger MWP, Baltes C, Müggler TP, Kranz FP, Rudin MP, Melkko S, Scheuermann JP, Neri D (2008) Discovery and applications of a portable albumin binder from a DNA-encoded chemical library. Angew Chem Int Ed Eng 47(17):3196–3201CrossRefGoogle Scholar
  31. Durr E, Yu J, Krasinska KM, Carver LA, Yates JR, Testa JE, Oh P, Schnitzer JE (2004) Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat Biotechnol 22:985–992CrossRefPubMedGoogle Scholar
  32. Ebbinghaus C, Ronca R, Kaspar M, Grabulovski D, Berndt A, Kosmehl H, Zardi L, Neri D (2005) Engineered vascular-targeting antibody-interferon-gamma fusion protein for cancer therapy. Int J Cancer 116:304–313CrossRefPubMedGoogle Scholar
  33. Fonsatti E, Jekunen AP, Kairemo KJ, Coral S, Snellman M, Nicotra MR, Natali PG, Altomonte M, Maio M (2000) Endoglin is a suitable target for efficient imaging of solid tumors: in vivo evidence in a canine mammary carcinoma model. Clin Cancer Res 6:2037–2043PubMedGoogle Scholar
  34. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976CrossRefPubMedGoogle Scholar
  35. Halin C, Niesner U, Villani ME, Zardi L, Neri D (2002a) Tumor-targeting properties of antibody-vascular endothelial growth factor fusion proteins. Int J Cancer 102:109–116CrossRefPubMedGoogle Scholar
  36. Halin C, Rondini S, Nilsson F, Berndt A, Kosmehl H, Zardi L, Neri D (2002b) Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. Nat Biotechnol 20:264–269CrossRefPubMedGoogle Scholar
  37. Halin C, Gafner V, Villani ME, Borsi L, Berndt A, Kosmehl H, Zardi L, Neri D (2003) Synergistic therapeutic effects of a tumor targeting antibody fragment, fused to interleukin 12 and to tumor necrosis factor alpha. Cancer Res 63:3202–3210PubMedGoogle Scholar
  38. Heldin CH, Rubin K, Pietras K, Ostman A (2004) High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer 4:806–813CrossRefPubMedGoogle Scholar
  39. Hu S, Shively L, Raubitschek A, Sherman M, Williams LE, Wong JY, Shively JE, Wu AM (1996) Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res 56:3055–3061PubMedGoogle Scholar
  40. Huang X, Bennett M, Thorpe PE (2005) A monoclonal antibody that binds anionic phospholipids on tumor blood vessels enhances the antitumor effect of docetaxel on human breast tumors in mice. Cancer Res 65:4408–4416CrossRefPubMedGoogle Scholar
  41. Huminiecki L, Bicknell R (2000) In silico cloning of novel endothelial-specific genes. Genome Res 10:1796–1806CrossRefPubMedGoogle Scholar
  42. Jacobson BS, Schnitzer JE, McCaffery M, Palade GE (1992) Isolation and partial characterization of the luminal plasmalemma of microvascular endothelium from rat lungs. Eur J Cell Biol 58:296–306PubMedGoogle Scholar
  43. Jain RK (1999) Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1:241–263CrossRefPubMedGoogle Scholar
  44. Jayson GC, Zweit J, Jackson A, Mulatero C, Julyan P, Ranson M, Broughton L, Wagstaff J, Hakannson L, Groenewegen G, Bailey J, Smith N, Hastings D, Lawrance J, Haroon H, Ward T, McGown AT, Tang M, Levitt D, Marreaud S, Lehmann FF, Herold M, Zwierzina H (2002) Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst 94:1484–1493PubMedGoogle Scholar
  45. Kaspar M, Trachsel E, Neri D (2007) The antibody-mediated targeted delivery of interleukin-15 and GM-CSF to the tumor neovasculature inhibits tumor growth and metastasis. Cancer Res 67:4940–4948CrossRefPubMedGoogle Scholar
  46. Khan ZA, Caurtero J, Barbin YP, Chan BM, Uniyal S, Chakrabarti S (2005) ED-B fibronectin in non-small cell lung carcinoma. Exp Lung Res 31:701–711CrossRefPubMedGoogle Scholar
  47. Korpanty G, Carbon JG, Grayburn PA, Fleming JB, Brekken RA (2007) Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 13:323–330CrossRefPubMedGoogle Scholar
  48. Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, Chan C, Chung HS, Eivazi A, Yoder SC, Vielmetter J, Carmichael DF, Hayes RJ, Dahiyat BI (2006) Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci USA 103:4005–4010CrossRefPubMedGoogle Scholar
  49. Liu H, Moy P, Kim S, Xia Y, Rajasekaran A, Navarro V, Knudsen B, Bander NH (1997) Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res 57:3629–3634PubMedGoogle Scholar
  50. Luster TA, He J, Huang X, Maiti SN, Schroit AJ, de Groot PG, Thorpe PE (2006) Plasma protein beta-2-glycoprotein 1 mediates interaction between the anti-tumor monoclonal antibody 3G4 and anionic phospholipids on endothelial cells. J Biol Chem 281:29863–29871CrossRefPubMedGoogle Scholar
  51. Matsuno F, Haruta Y, Kondo M, Tsai H, Barcos M, Seon BK (1999) Induction of lasting complete regression of preformed distinct solid tumors by targeting the tumor vasculature using two new anti-endoglin monoclonal antibodies. Clin Cancer Res 5:371–382PubMedGoogle Scholar
  52. McNeel DG, Eickhoff J, Lee FT, King DM, Alberti D, Thomas JP, Friedl A, Kolesar J, Marnocha R, Volkman J, Zhang J, Hammershaimb L, Zwiebel JA, Wilding G (2005) Phase I trial of a monoclonal antibody specific for alphavbeta3 integrin (MEDI-522) in patients with advanced malignancies, including an assessment of effect on tumor perfusion. Clin Cancer Res 11:7851–7860CrossRefPubMedGoogle Scholar
  53. Melkko S, Halin C, Borsi L, Zardi L, Neri D (2002) An antibody-calmodulin fusion protein reveals a functional dependence between macromolecular isoelectric point and tumor targeting performance. Int J Radiat Oncol Biol Phys 54: 1485–1490PubMedGoogle Scholar
  54. Menrad A, Menssen HD (2005) ED-B fibronectin as a target for antibody-based cancer treatments. Expert Opin Ther Targets 9:491–500CrossRefPubMedGoogle Scholar
  55. Milowsky MI, Nanus DM, Kostakoglu L, Sheehan CE, Vallabhajosula S, Goldsmith SJ, Ross JS, Bander NH (2007) Vascular targeted therapy with anti-prostate-specific membrane antigen monoclonal antibody J591 in advanced solid tumors. J Clin Oncol 25:540–547CrossRefPubMedGoogle Scholar
  56. Minhajat R, Mori D, Yamasaki F, Sugita Y, Satoh T, Tokunaga O (2006) Organ-specific endoglin (CD105) expression in the angiogenesis of human cancers. Pathol Int 56:717–723CrossRefPubMedGoogle Scholar
  57. Morris MJ, Pandit-Taskar N, Divgi CR, Bender S, O’Donoghue JA, Nacca A, Smith-Jones P, Schwartz L, Slovin S, Finn R, Larson S, Scher HI (2007) Phase I evaluation of J591 as a vascular targeting agent in progressive solid tumors. Clin Cancer Res 13:2707–2713CrossRefPubMedGoogle Scholar
  58. Mulgrew K, Kinneer K, Yao XT, Ward BK, Damschroder MM, Walsh B, Mao SY, Gao C, Kiener PA, Coats S, Kinch MS, Tice DA (2006) Direct targeting of alphavbeta3 integrin on tumor cells with a monoclonal antibody, Abegrin. Mol Cancer Ther 5:3122–3129CrossRefPubMedGoogle Scholar
  59. Neri D, Carnemolla B, Nissim A, Leprini A, Querze G, Balza E, Pini A, Tarli L, Halin C, Neri P, Zardi L, Winter G (1997) Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat Biotechnol 15:1271–1275CrossRefPubMedGoogle Scholar
  60. Neri D, Bicknell R (2005) Tumour vascular targeting. Nat Rev Cancer 5:436–446CrossRefPubMedGoogle Scholar
  61. Niesner U, Halin C, Lozzi L, Gunthert M, Neri P, Wunderli-Allenspach H, Zardi L, Neri D (2002) Quantitation of the tumor-targeting properties of antibody fragments conjugated to cell-permeating HIV-1 TAT peptides. Bioconjug Chem 13:729–736CrossRefPubMedGoogle Scholar
  62. Oh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA, Testa JE, Schnitzer JE (2004) Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429:629–635CrossRefPubMedGoogle Scholar
  63. Paganelli G, Grana C, Chinol M, Cremonesi M, De Cicco C, De Braud F, Robertson C, Zurrida S, Casadio C, Zoboli S, Siccardi AG, Veronesi U (1999) Antibody-guided three-step therapy for high grade glioma with yttrium-90 biotin. Eur J Nucl Med 26:348–357CrossRefPubMedGoogle Scholar
  64. Pasqualini R, Koivunen E, Ruoslahti E (1997) Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15:542–546CrossRefPubMedGoogle Scholar
  65. Pelegrin A, Folli S, Buchegger F, Mach JP, Wagnieres G, van den Bergh H (1991) Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice. Cancer 67:2529–2537CrossRefPubMedGoogle Scholar
  66. Porkka K, Laakkonen P, Hoffman JA, Bernasconi M, Ruoslahti E (2002) A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci USA 99:7444–7449CrossRefPubMedGoogle Scholar
  67. Ran S, Downes A, Thorpe PE (2002) Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res 62:6132–6140PubMedGoogle Scholar
  68. Ran S, He J, Huang X, Soares M, Scothorn D, Thorpe PE (2005) Antitumor effects of a monoclonal antibody that binds anionic phospholipids on the surface of tumor blood vessels in mice. Clin Cancer Res 11:1551–1562CrossRefPubMedGoogle Scholar
  69. Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, Herndon JE 2nd, McLendon RE, Pegram CN, Provenzale JM, Quinn JA, Rich JN, Vredenburgh JJ, Desjardins A, Gururangan S, Badruddoja M, Dowell JM, Wong TZ, Zhao XG, Zalutsky MR, Bigner DD (2006) Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: phase II study results. J Clin Oncol 24:115–122CrossRefPubMedGoogle Scholar
  70. Riva P, Franceschi G, Frattarelli M, Lazzari S, Riva N, Giuliani G, Casi M, Sarti G, Guiducci G, Giorgetti G, Gentile R, Santimaria M, Jermann E, Maeke HR (1999) Loco-regional radioimmunotherapy of high-grade malignant gliomas using specific monoclonal antibodies labeled with 90Y: a phase I study. Clin Cancer Res 5:3275s–3280sPubMedGoogle Scholar
  71. Roesli C, Neri D, Rybak JN (2006) In vivo protein biotinylation and sample preparation for the proteomic identification of organ- and disease-specific antigens accessible from the vasculature. Nat Protoc 1:192–199CrossRefPubMedGoogle Scholar
  72. Rybak JN, Ettorre A, Kaissling B, Giavazzi R, Neri D, Elia G (2005) In vivo protein biotinylation for identification of organ-specific antigens accessible from the vasculature. Nat Methods 2:291–298CrossRefPubMedGoogle Scholar
  73. Rybak JN, Roesli C, Kaspar M, Villa A, Neri D (2007a) The extra-domain A of fibronectin is a vascular marker of solid tumors and metastases. Cancer Res 67:10948–10957CrossRefPubMedGoogle Scholar
  74. Rybak JN, Trachsel E, Scheuermann J, Neri D (2007b) Ligand-based vascular targeting of disease. ChemMedChem 2:22–40CrossRefPubMedGoogle Scholar
  75. Santimaria M, Moscatelli G, Viale GL, Giovannoni L, Neri G, Viti F, Leprini A, Borsi L, Castellani P, Zardi L, Neri D, Riva P (2003) Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 9:571–579PubMedGoogle Scholar
  76. Schliemann C, Neri D (2007) Antibody-based targeting of the tumor vasculature. Biochim Biophys Acta 1776:175–192PubMedGoogle Scholar
  77. Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5:147–159CrossRefPubMedGoogle Scholar
  78. Seaman S, Stevens J, Yang MY, Logsdon D, Graff-Cherry C, St Croix B (2007) Genes that Distinguish Physiological and Pathological Angiogenesis. Cancer Cell 11:539–554CrossRefPubMedGoogle Scholar
  79. Silacci M, Brack SS, Spath N, Buck A, Hillinger S, Arni S, Weder W, Zardi L, Neri D (2006) Human monoclonal antibodies to domain C of tenascin-C selectively target solid tumors in vivo. Protein Eng Des Sel 19:471–478CrossRefPubMedGoogle Scholar
  80. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3:81–85PubMedGoogle Scholar
  81. Singh Jaggi J, Henke E, Seshan SV, Kappel BJ, Chattopadhyay D, May C, McDevitt MR, Nolan D, Mittal V, Benezra R, Scheinberg DA (2007) Selective alpha-particle mediated depletion of tumor vasculature with vascular normalization. PLoS ONE 2:e267CrossRefGoogle Scholar
  82. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC (1998) Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 4:623–626CrossRefPubMedGoogle Scholar
  83. Siri A, Carnemolla B, Saginati M, Leprini A, Casari G, Baralle F, Zardi L (1991) Human tenascin: primary structure, pre-mRNA splicing patterns and localization of the epitopes recognized by two monoclonal antibodies. Nucleic Acids Res 19:525–531CrossRefPubMedGoogle Scholar
  84. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202CrossRefPubMedGoogle Scholar
  85. Stollman TH, Scheer MGW, Leenders WPJ, Verrijp CN, Soede AC, Oyen WJG, Ruers TJM, Boerman OC (2008) Specific imaging of VEFG-A expression with radiolabeled anti-VEGF monoclonal antibody. Int J Cancer 122(10):2310–2314CrossRefPubMedGoogle Scholar
  86. Tarli L, Balza E, Viti F, Borsi L, Castellani P, Berndorff D, Dinkelborg L, Neri D, Zardi L (1999) A high-affinity human antibody that targets tumoral blood vessels. Blood 94:192–198PubMedGoogle Scholar
  87. Temming K, Schiffelers RM, Molema G, Kok RJ (2005) RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist Updat 8:381–402CrossRefPubMedGoogle Scholar
  88. Tijink BM, Neri D, Leemans CR, Budde M, Dinkelborg LM, Stigter-van Walsum M, Zardi L, van Dongen GA (2006) Radioimmunotherapy of head and neck cancer xenografts using 131I-labeled antibody L19-SIP for selective targeting of tumor vasculature. J Nucl Med 47:1127–1135PubMedGoogle Scholar
  89. Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17:176–180CrossRefPubMedGoogle Scholar
  90. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487CrossRefPubMedGoogle Scholar
  91. Verel I, Visser GW, van Dongen GA (2005) The promise of immuno-PET in radioimmunotherapy. J Nucl Med 46(Suppl 1):164S–171SPubMedGoogle Scholar
  92. Villa A, Trachsel E, Kaspar M, Schliemann C, Sommavilla R, Rybak J, Rösli C, Borsi L, Zardi L, Neri D (2008) A high-affinity human monoclonal antibody specific to the alternatively-spliced EDA domain of fibronectin efficiently targets tumor neo-vasculature in vivo. Int J Cancer 122:2405–2413CrossRefPubMedGoogle Scholar
  93. Wang JM, Kumar S, Pye D, van Agthoven AJ, Krupinski J, Hunter RD (1993) A monoclonal antibody detects heterogeneity in vascular endothelium of tumours and normal tissues. Int J Cancer 54:363–370CrossRefPubMedGoogle Scholar
  94. Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137–1146CrossRefPubMedGoogle Scholar
  95. Zardi L, Carnemolla B, Siri A, Petersen TE, Paolella G, Sebastio G, Baralle FE (1987) Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. Embo J 6:2337–2342PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Christoph Schliemann
  • Dario Neri
    • 1
  1. 1.Institute of Pharmaceutical Sciences, Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology ZürichZürichSwitzerland

Personalised recommendations