Advertisement

Metronomic Chemotherapy: Principles and Lessons Learned from Applications in the Treatment of Metastatic Prostate Cancer

  • Urban EmmeneggerEmail author
  • Giulio Francia
  • Yuval Shaked
  • Robert S. Kerbel
Chapter
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 180)

Abstract

By frequent and protracted administration of conventional cytotoxic drugs without prolonged interruptions, the primary treatment target shifts from the tumor cell population to the tumor vasculature. This “metronomic” way of chemotherapy administration results in antivascular effects, the mechanistic basis of which remains to be fully elucidated. We outline the basic aspects of the metronomic concept, describe the results of clinical applications of such chemotherapy by focusing on studies in metastatic prostate cancer, and discuss certain shortcomings. Based on preclinical findings, we finally point to the possible ways to address these shortcomings in order to bring this novel and promising use of conventional anticancer agents to full fruition.

Keywords

Maximal Tolerate Dose Androgen Deprivation Therapy Antiangiogenic Agent Antiangiogenic Effect Chemotherapy Administration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work summarized in this review was supported by grants from the National Cancer Institute of Canada, the Canadian Institutes for Health Research, and the National Institutes of Health, USA, to Robert S. Kerbel, and by sponsored research agreements with ImClone Systems, New York, and Taiho Pharmaceuticals, Japan. Urban Emmenegger is supported by the Ontario Institute for Cancer Research through funding provided by the Province of Ontario. We thank Cassandra Cheng for her excellent secretarial assistance.

References

  1. Bertolini F, Mancuso P, Shaked Y, Kerbel RS (2007) Molecular and cellular biomarkers for angiogenesis in clinical oncology. Drug Discov Today 12:806–812CrossRefPubMedGoogle Scholar
  2. Bertolini F, Paul S, Mancuso P, Monestiroli S, Gobbi A, Shaked Y, Kerbel RS (2003) Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 63:4342–4346PubMedGoogle Scholar
  3. Bertolini F, Shaked Y, Mancuso P, Kerbel RS (2006) The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat Rev Cancer 6:835–845CrossRefPubMedGoogle Scholar
  4. Bocci G, Francia G, Man S, Lawler J, Kerbel RS (2003) Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci U S A 100: 12917–12922CrossRefPubMedGoogle Scholar
  5. Bocci G, Nicolaou KC, Kerbel RS (2002) Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res 62:6938–6943PubMedGoogle Scholar
  6. Bocci G, Tuccori M, Emmenegger U, Liguori V, Falcone A, Kerbel RS, Del Tacca M (2005) Cyclophosphamide-methotrexate ‘metronomic’ chemotherapy for the palliative treatment of metastatic breast cancer. A comparative pharmacoeconomic evaluation. Ann Oncol 16:1243–1252CrossRefPubMedGoogle Scholar
  7. Bolontrade MF, Zhou RR, Kleinerman ES (2002) Vasculogenesis plays a role in the growth of Ewing’s sarcoma in vivo. Clin Cancer Res 8: 3622–3627PubMedGoogle Scholar
  8. Bottini A, Generali D, Brizzi MP, Fox SB, Bersiga A, Bonardi S, Allevi G, Aguggini S, Bodini G, Milani M, Dionisio R, Bernardi C, Montruccoli A, Bruzzi P, Harris AL, Dogliotti L, Berruti A (2006) Randomized phase II trial of letrozole and letrozole plus low-dose metronomic oral cyclophosphamide as primary systemic treatment in elderly breast cancer patients. J Clin Oncol 24: 3623–3628CrossRefPubMedGoogle Scholar
  9. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O’Reilly MS, Folkman J (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60:1878–1886PubMedGoogle Scholar
  10. Buckstein R, Kerbel RS, Shaked Y, Nayar R, Foden C, Turner R, Lee CR, Taylor D, Zhang L, Man S, Baruchel S, Stempak D, Bertolini F, Crump M (2006) High-dose celecoxib and metronomic “low-dose” cyclophosphamide is an effective and safe therapy in patients with relapsed and refractory aggressive histology non-Hodgkin’s lymphoma. Clin Cancer Res 12:5190–5198CrossRefPubMedGoogle Scholar
  11. Burstein HJ, Spigel D, Kindsvogel K, Parker LM, Bunnel CA, Partridge AH, Come SE, Ryan PD, Gelman R, Winer EP (2005) Metronomic chemotherapy with and without bevacizumab for advanced breast cancer: a randomized phase II study. In: San Antonio Breast Cancer Symposium. Breast Cancer Res Treat 94(Suppl 1):S6, Abstract 4Google Scholar
  12. Casanova M, Ferrari A, Bisogno G, Merks JH, De Salvo GL, Meazza C, Tettoni K, Provenzi M, Mazzarino I, Carli M (2004) Vinorelbine and low-dose cyclophosphamide in the treatment of pediatric sarcomas: pilot study for the upcoming European Rhabdomyosarcoma Protocol. Cancer 101:1664–1671CrossRefPubMedGoogle Scholar
  13. Colleoni M, Orlando L, Sanna G, Rocca A, Maisonneuve P, Peruzzotti G, Ghisini R, Sandri MT, Zorzino L, Nole F, Viale G, Goldhirsch A (2006) Metronomic low-dose oral cyclophosphamide and methotrexate plus or minus thalidomide in metastatic breast cancer: antitumor activity and biological effects. Ann Oncol 17: 232–238CrossRefPubMedGoogle Scholar
  14. Colleoni M, Rocca A, Sandri MT, Zorzino L, Masci G, Nole F, Peruzzotti G, Robertson C, Orlando L, Cinieri S, de BF, Viale G, Goldhirsch A (2002) Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumor activity and correlation with vascular endothelial growth factor levels. Ann Oncol 13:73–80CrossRefPubMedGoogle Scholar
  15. Cruz-Munoz W, Man S, Xu P, Kerbel RS (2008) Development of a preclinical model of spontaneous human melanoma CNS metastasis. Cancer Res 68(12):4500–4505CrossRefPubMedGoogle Scholar
  16. Damber JE, Vallbo C, Albertsson P, Lennernas B, Norrby K (2006) The anti-tumour effect of low-dose continuous chemotherapy may partly be mediated by thrombospondin. Cancer Chemother Pharmacol 58:354–360CrossRefPubMedGoogle Scholar
  17. de Bont ES, Guikema JE, Scherpen F, Meeuwsen T, Kamps WA, Vellenga E, Bos NA (2001) Mobilized human CD34+ hematopoietic stem cells enhance tumor growth in a nonobese diabetic/severe combined immunodeficient mouse model of human non-Hodgkin’s lymphoma. Cancer Res 61:7654–7659PubMedGoogle Scholar
  18. Dellapasqua S, Bertolini F, Bagnardi V, Campagnoli E, Scarano E, Torrisi R, Shaked Y, Mancuso P, Goldhirsch A, Rocca A, Pietri E, Colleoni M. Metronomic cyclophosphamide and capecitabine combined with bevacizumab in advanced breast cancer. J Clin Oncol. 2008;26:4899-905 Google Scholar
  19. Di Lorenzo G, Autorino R, De Laurentiis M, Forestieri V, Romano C, Prudente A, Giugliano F, Imbimbo C, Mirone V, De Placido S (2007) Thalidomide in combination with oral daily cyclophosphamide in patients with pretreated hormone refractory prostate cancer: a phase I clinical trial. Cancer Biol Ther 6:313–317CrossRefPubMedGoogle Scholar
  20. du Manoir JM, Francia G, Man S, Mossoba M, Medin JA, Viloria-Petit A, Hicklin DJ, Emmenegger U, Kerbel RS (2006) Strategies for delaying or treating in vivo acquired resistance to trastuzumab in human breast cancer xenografts. Clin Cancer Res 12:904–916CrossRefPubMedGoogle Scholar
  21. Ellis GK, Livingston RB, Gralow JR, Green SJ, Thompson T (2002) Dose-dense anthracycline-based chemotherapy for node-positive breast cancer. J Clin Oncol 20:3637–3643CrossRefPubMedGoogle Scholar
  22. Emmenegger U, Man S, Shaked Y, Francia G, Wong JW, Hicklin DJ, Kerbel RS (2004) A comparative analysis of low-dose metronomic cyclophosphamide reveals absent or low-grade toxicity on tissues highly sensitive to the toxic effects of maximum tolerated dose regimens. Cancer Res 64:3994–4000CrossRefPubMedGoogle Scholar
  23. Emmenegger U, Morton GC, Francia G, Shaked Y, Franco M, Weinerman A, Man S, Kerbel RS (2006) Low-dose metronomic daily cyclophosphamide and weekly tirapazamine: a well-tolerated combination regimen with enhanced efficacy that exploits tumor hypoxia. Cancer Res 66:1664–1674CrossRefPubMedGoogle Scholar
  24. Emmenegger U, Shaked Y, Man S, Bocci G, Spasojevic I, Francia G, Kouri A, Coke R, Cruz-Munoz W, Ludeman SM, Colvin OM, Kerbel RS (2007) Pharmacodynamic and pharmacokinetic study of chronic low-dose metronomic cyclophosphamide therapy in mice. Mol Cancer Ther 6:2280–2289CrossRefPubMedGoogle Scholar
  25. Escuin D, Kline ER, Giannakakou P (2005) Both microtubule-stabilizing and microtubule-destabilizing drugs inhibit hypoxia-inducible factor-1alpha accumulation and activity by disrupting microtubule function. Cancer Res 65:9021–9028CrossRefPubMedGoogle Scholar
  26. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974CrossRefPubMedGoogle Scholar
  27. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186CrossRefPubMedGoogle Scholar
  28. Fontana A, Bocci G, Galli L, Fontana E, Galli C, Landi L, Fioravanti A, Orlandi P, Del Tacca M, Falcone A (2007) Low-dose metronomic cyclophosphamide (CTX) plus celecoxib (C) and dexamethasone (DEX) in advanced hormone-refractory prostate cancer (HRPC): A phase II clinical trial with evaluation of clinical and pharmacodynamic effects of the combination. In: ASCO GU Proceedings 2007, abstract 215Google Scholar
  29. Garcia AA, Hirte H, Fleming G, Yang D, Tsao-Wei DD, Roman L, Groshen S, Swenson S, Markland F, Gandara D, Scudder S, Morgan R, Chen H, Lenz HJ, Oza AM (2008) Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia. J Clin Oncol 26:76–82CrossRefPubMedGoogle Scholar
  30. Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, Solary E, Le Cesne A, Zitvogel L, Chauffert B (2007) Metronomic cyclophosphamide regimen selectively depletes CD4(+)CD25 (+) regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56: 641–648CrossRefPubMedGoogle Scholar
  31. Gille J, Spieth K, Kaufmann R (2005) Metronomic low-dose chemotherapy as antiangiogenic therapeutic strategy for cancer. J Dtsch Dermatol Ges 3:26–32CrossRefPubMedGoogle Scholar
  32. Glode LM (2006) The case for adjuvant therapy for prostate cancer. J Urol 176:S30–S33CrossRefGoogle Scholar
  33. Glode LM, Barqawi A, Crighton F, Crawford ED, Kerbel R (2003) Metronomic therapy with cyclophosphamide and dexamethasone for prostate carcinoma. Cancer 98:1643–1648CrossRefPubMedGoogle Scholar
  34. Gupta K, Gupta P, Wild R, Ramakrishnan S, Hebbel RP (1999) Binding and displacement of vascular endothelial growth factor (VEGF) by thrombospondin: effect on human microvascular endothelial cell proliferation and angiogenesis. Angiogenesis 3:147–158CrossRefPubMedGoogle Scholar
  35. Hahnfeldt P, Folkman J, Hlatky L (2003) Minimizing long-term tumor burden: the logic for metronomic chemotherapeutic dosing and its antiangiogenic basis. J Theor Biol 220:545–554CrossRefPubMedGoogle Scholar
  36. Hamano Y, Sugimoto H, Soubasakos MA, Kieran M, Olsen BR, Lawler J, Sudhakar A, Kalluri R (2004) Thrombospondin-1 associated with tumor microenvironment contributes to low-dose cyclophosphamide-mediated endothelial cell apoptosis and tumor growth suppression. Cancer Res 64:1570–1574CrossRefPubMedGoogle Scholar
  37. Hanahan D, Bergers G, Bergsland E (2000) Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 105:1045–1047CrossRefPubMedGoogle Scholar
  38. Haubitz M, Schellong S, Gobel U, Schurek HJ, Schaumann D, Koch KM, Brunkhorst R (1998) Intravenous pulse administration of cyclophosphamide versus daily oral treatment in patients with antineutrophil cytoplasmic antibody-associated vasculitis and renal involvement: a prospective, randomized study. Arthritis Rheum 41: 1835–1844CrossRefPubMedGoogle Scholar
  39. Hoffman GS, Kerr GS, Leavitt RY, Hallahan CW, Lebovics RS, Travis WD, Rottem M, Fauci AS (1992) Wegener granulomatosis: an analysis of 158 patients. Ann Intern Med 116:488–498PubMedGoogle Scholar
  40. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335–2342CrossRefPubMedGoogle Scholar
  41. Jubb AM, Oates AJ, Holden S, Koeppen H (2006) Predicting benefit from anti-angiogenic agents in malignancy. Nat Rev Cancer 6:626–635CrossRefPubMedGoogle Scholar
  42. Kamen BA, Glod J, Cole PD (2006) Metronomic therapy from a pharmacologist’s view. J Pediatr Hematol Oncol 28:325–327CrossRefPubMedGoogle Scholar
  43. Kerbel RS (2000) Tumor angiogenesis: past, present and the near future. Carcinogenesis 21: 505–515CrossRefPubMedGoogle Scholar
  44. Kerbel RS (2006) Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science 312:1171–1175CrossRefPubMedGoogle Scholar
  45. Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4:423–436CrossRefPubMedGoogle Scholar
  46. Kerbel RS, Viloria-Petit A, Klement G, Rak J (2000) ‘Accidental’ anti-angiogenic drugs. anti-oncogene directed signal transduction inhibitors and conventional chemotherapeutic agents as examples. Eur J Cancer 36:1248–1257CrossRefPubMedGoogle Scholar
  47. Kieran MW, Turner CD, Rubin JB, Chi SN, Zimmerman MA, Chordas C, Klement G, Laforme A, Gordon A, Thomas A, Neuberg D, Browder T, Folkman J (2005) A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J Pediatr Hematol Oncol 27:573–581CrossRefPubMedGoogle Scholar
  48. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, Bohlen P, Kerbel RS (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105:R15–R24CrossRefGoogle Scholar
  49. Lam T, Hetherington JW, Greenman J, Maraveyas A (2006) From total empiricism to a rational design of metronomic chemotherapy phase I dosing trials. Anticancer Drugs 17:113–121CrossRefPubMedGoogle Scholar
  50. Lin AM, Ryan CJ, Small EJ (2007) Intermittent chemotherapy for metastatic hormone refractory prostate cancer. Crit Rev Oncol Hematol 61: 243–254CrossRefPubMedGoogle Scholar
  51. Lord R, Nair S, Schache A, Spicer J, Somaihah N, Khoo V, Pandha H (2007) Low dose metronomic oral cyclophosphamide for hormone resistant prostate cancer: a phase II study. J Urol 177: 2136–2140; discussion 2140Google Scholar
  52. Ma J, Waxman DJ (2007) Collaboration between hepatic and intratumoral prodrug activation in a P450 prodrug-activation gene therapy model for cancer treatment. Mol Cancer Ther 6:2879–2890CrossRefPubMedGoogle Scholar
  53. Ma J, Waxman DJ (2008) Modulation of the antitumor activity of metronomic cyclophosphamide by the angiogenesis inhibitor axitinib. Mol Cancer Ther 7:79–89CrossRefPubMedGoogle Scholar
  54. Man S, Bocci G, Francia G, Green SK, Jothy S, Hanahan D, Bohlen P, Hicklin DJ, Bergers G, Kerbel RS (2002) Antitumor effects in mice of low-dose (metronomic) cyclophosphamide administered continuously through the drinking water. Cancer Res 62:2731–2735PubMedGoogle Scholar
  55. Mike S, Harrison C, Coles B, Staffurth J, Wilt TJ, Mason MD (2006) Chemotherapy for hormone-refractory prostate cancer. Cochrane Database Syst Rev: CD005247Google Scholar
  56. Miller KD, Sweeney CJ, Sledge GW Jr (2001) Redefining the target: chemotherapeutics as antiangiogenics. J Clin Oncol 19:1195–1206PubMedGoogle Scholar
  57. Munoz R, Man S, Shaked Y, Lee CR, Wong J, Francia G, Kerbel RS (2006) Highly efficacious nontoxic preclinical treatment for advanced metastatic breast cancer using combination oral UFT-cyclophosphamide metronomic chemotherapy. Cancer Res 66:3386–3391CrossRefPubMedGoogle Scholar
  58. Ng SS, Sparreboom A, Shaked Y, Lee C, Man S, Desai N, Soon-Shiong P, Figg WD, Kerbel RS (2006) Influence of formulation vehicle on metronomic taxane chemotherapy: albumin-bound versus cremophor EL-based paclitaxel. Clin Cancer Res 12:4331–4338CrossRefPubMedGoogle Scholar
  59. Nicholson B, Theodorescu D (2004) Angiogenesis and prostate cancer tumor growth. J Cell Biochem 91:125–150CrossRefPubMedGoogle Scholar
  60. Nicolini A, Mancini P, Ferrari P, Anselmi L, Tartarelli G, Bonazzi V, Carpi A, Giardino R (2004) Oral low-dose cyclophosphamide in metastatic hormone refractory prostate cancer (MHRPC). Biomed Pharmacother 58:447–450PubMedGoogle Scholar
  61. Nishimura K, Nonomura N, Ono Y, Nozawa M, Fukui T, Harada Y, Imazu T, Takaha N, Sugao H, Miki T, Okuyama A (2001) Oral combination of cyclophosphamide, uracil plus tegafur and estramustine for hormone-refractory prostate cancer. Oncology 60:49–54CrossRefPubMedGoogle Scholar
  62. Orlando L, Cardillo A, Rocca A, Balduzzi A, Ghisini R, Peruzzotti G, Goldhirsch A, D’Alessandro C, Cinieri S, Preda L, Colleoni M (2006) Prolonged clinical benefit with metronomic chemotherapy in patients with metastatic breast cancer. Anticancer Drugs 17:961–967CrossRefPubMedGoogle Scholar
  63. Petrylak DP, Tangen CM, Hussain MH, Lara PN Jr, Jones JA, Taplin ME, Burch PA, Berry D, Moinpour C, Kohli M, Benson MC, Small EJ, Raghavan D, Crawford ED (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351:1513–1520CrossRefPubMedGoogle Scholar
  64. Pienta KJ, Smith DC (2005) Advances in prostate cancer chemotherapy: a new era begins. CA Cancer J Clin 55: 300–318; quiz 323–305Google Scholar
  65. Pietras K, Hanahan D (2005) A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol 23: 939–952CrossRefPubMedGoogle Scholar
  66. Quesada AJ, Nelius T, Yap R, Zaichuk TA, Alfranca A, Filleur S, Volpert OV, Redondo JM (2005) In vivo upregulation of CD95 and CD95L causes synergistic inhibition of angiogenesis by TSP1 peptide and metronomic doxorubicin treatment. Cell Death Differ 12:649–658CrossRefPubMedGoogle Scholar
  67. Rapisarda A, Zalek J, Hollingshead M, Braunschweig T, Uranchimeg B, Bonomi CA, Borgel SD, Carter JP, Hewitt SM, Shoemaker RH, Melillo G (2004) Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts. Cancer Res 64:6845–6848CrossRefPubMedGoogle Scholar
  68. Rivera E, Mejia JA, Arun BK, Adinin RB, Walters RS, Brewster A, Broglio KR, Yin G, Esmaeli B, Hortobagyi GN, Valero V (2008) Phase 3 study comparing the use of docetaxel on an every-3-week versus weekly schedule in the treatment of metastatic breast cancer. Cancer 112:1455–1461CrossRefPubMedGoogle Scholar
  69. Rocca A, Dellapasqua A, Pietri E, Dettori M, D’Alessandro C, Ghisini R, Colombo A, Goldhirsch A, Colleoni M (2007) Metronomic chemotherapy with capecitabine and oral cyclophosphamide in combination with bevacizumab in metastatic breast cancer (mbc): evidence of activity of an antiangiogenic treatment. In: ASCO Annual Meeting Proceedings Part I. J Clin Oncol 25(18S): abstract 11501Google Scholar
  70. Rohan RM, Fernandez A, Udagawa T, Yuan J, D’Amato RJ (2000) Genetic heterogeneity of angiogenesis in mice. Faseb J 14:871–876PubMedGoogle Scholar
  71. Ryan CJ, Lin AM, Small EJ (2006) Angiogenesis inhibition plus chemotherapy for metastatic hormone refractory prostate cancer: history and rationale. Urol Oncol 24:250–253PubMedGoogle Scholar
  72. Shaked Y, Bertolini F, Man S, Rogers MS, Cervi D, Foutz T, Rawn K, Voskas D, Dumont DJ, Ben-David Y, Lawler J, Henkin J, Huber J, Hicklin DJ, D’Amato RJ, Kerbel RS (2005a) Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell 7:101–111PubMedGoogle Scholar
  73. Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM, Hicklin DJ, Chaplin D, Foster FS, Benezra R, Kerbel RS (2006) Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313:1785–1787CrossRefPubMedGoogle Scholar
  74. Shaked Y, Emmenegger U, Francia G, Chen L, Lee CR, Man S, Paraghamian A, Ben-David Y, Kerbel RS (2005b) Low-dose metronomic combined with intermittent bolus-dose cyclophosphamide is an effective long-term chemotherapy treatment strategy. Cancer Res 65:7045–7051CrossRefPubMedGoogle Scholar
  75. Shaked Y, Emmenegger U, Man S, Cervi D, Bertolini F, Ben-David Y, Kerbel RS (2005c) Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood 106:3058–3061CrossRefPubMedGoogle Scholar
  76. Shirakawa K, Furuhata S, Watanabe I, Hayase H, Shimizu A, Ikarashi Y, Yoshida T, Terada M, Hashimoto D, Wakasugi H (2002) Induction of vasculogenesis in breast cancer models. Br J Cancer 87:1454–1461CrossRefPubMedGoogle Scholar
  77. Sterba J, Pavelka Z, Slampa P (2002) Concomitant radiotherapy and metronomic temozolomide in pediatric high-risk brain tumors. Neoplasma 49: 117–120PubMedGoogle Scholar
  78. Takahashi Y, Mai M, Sawabu N, Nishioka K (2005) A pilot study of individualized maximum repeatable dose (iMRD), a new dose finding system, of weekly gemcitabine for patients with metastatic pancreas cancer. Pancreas 30:206–210CrossRefPubMedGoogle Scholar
  79. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, Oudard S, Theodore C, James ND, Turesson I, Rosenthal MA, Eisenberger MA (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351:1502–1512CrossRefPubMedGoogle Scholar
  80. Tannock IF, Osoba D, Stockler MR, Ernst DS, Neville AJ, Moore MJ, Armitage GR, Wilson JJ, Venner PM, Coppin CM, Murphy KC (1996) Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: a Canadian randomized trial with palliative end points. J Clin Oncol 14:1756–1764PubMedGoogle Scholar
  81. Tran J, Master Z, Yu JL, Rak J, Dumont DJ, Kerbel RS (2002) A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proc Natl Acad Sci U S A 99:4349–4354CrossRefPubMedGoogle Scholar
  82. Vogelzang NJ (1984) Continuous infusion chemotherapy: a critical review. J Clin Oncol 2:1289–1304PubMedGoogle Scholar
  83. Volpert OV, Zaichuk T, Zhou W, Reiher F, Ferguson TA, Stuart PM, Amin M, Bouck NP (2002) Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat Med 8:349–357CrossRefPubMedGoogle Scholar
  84. Wang J, Lou P, Lesniewski R, Henkin J (2003) Paclitaxel at ultra low concentrations inhibits angiogenesis without affecting cellular microtubule assembly. Anticancer Drugs 14:13–19CrossRefPubMedGoogle Scholar
  85. Winquist E, Waldron T, Berry S, Ernst DS, Hotte S, Lukka H (2006) Non-hormonal systemic therapy in men with hormone-refractory prostate cancer and metastases: a systematic review from the Cancer Care Ontario Program in Evidence-based Care’s Genitourinary Cancer Disease Site Group. BMC Cancer 6:112CrossRefPubMedGoogle Scholar
  86. Yap R, Veliceasa D, Emmenegger U, Kerbel RS, McKay LM, Henkin J, Volpert OV (2005) Metronomic low-dose chemotherapy boosts CD95-dependent antiangiogenic effect of the thrombospondin peptide ABT-510: a complementation antiangiogenic strategy. Clin Cancer Res 11: 6678–6685CrossRefPubMedGoogle Scholar
  87. Young SD, Whissell M, Noble JC, Cano PO, Lopez PG, Germond CJ (2006) Phase II clinical trial results involving treatment with low-dose daily oral cyclophosphamide, weekly vinblastine, and rofecoxib in patients with advanced solid tumors. Clin Cancer Res 12:3092–3098CrossRefPubMedGoogle Scholar
  88. Zhu AX (2008) Development of sorafenib and other molecularly targeted agents in hepatocellular carcinoma. Cancer 112:250–259CrossRefPubMedGoogle Scholar
  89. Cruz-Munoz W, Man S, Kerbel RS. Effective Treatment of Advanced Human Melanoma Metastasis in Immunodeficient Mice Using Combination Metronomic Chemotherapy Regimens. Clin Cancer Res. 2009 Jul 21. [Epub ahead of print]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Urban Emmenegger
    • 1
    Email author
  • Giulio Francia
  • Yuval Shaked
  • Robert S. Kerbel
  1. 1.Department of Medicine, Division of Medical Oncology, and Department of Medical Biophysics, Division of Molecular and Cellular Biology, Sunnybrook Health Sciences CentreUniversity of TorontoTorontoCanada

Personalised recommendations