Skip to main content

Influence of Contact Modelling on the Macroscopic Plastic Response of Granular Soils Under Cyclic Loading

  • Chapter
Mathematical Models of Granular Matter

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1937))

An alternative to the use of continuous equations and constitutive models is the microscopic description of the material in terms of the grains themselves and the contacts (interactions) between them. This approach has been successfully applied in recent years to the study of many different problems in soil mechanics and granular physics. An open question is how realistic the microscopic model must be in order to accurately describe the macroscopic behavior observed in experiments. The objective of this contribution is to show the influence of different simple models of compacted granular soils on the overall elasto-plastic response of the system as a whole. We will focus our investigation on granular ratcheting, which is the persistent strain accumulation that a granular soil suffers under certain cyclic stress conditions. The direct influence of different models on the ratcheting response of the material will also help us to understand further this peculiar behavior of the system. The influence of particle shape will be also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Bagi, Mech. of Mat. 22, 165 (1996).

    Article  Google Scholar 

  2. P. A. Cundall, A. Drescher, and O. D. L. Strack, in IUTAM Conference on Deformation and Failure of Granular Materials (Delft, 1982), pp. 355–370.

    Google Scholar 

  3. B. J. Alder and T. E. Wainwright, J. Chem. Phys. 31, 459 (1959).

    Article  MathSciNet  Google Scholar 

  4. H. J. Herrmann and S. Luding, Continuum Mechanics and Thermodynamics 10, 189 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  5. P. A. Cundall, in Proc. Symp. Int. Rock Mech. (Balkema, Nancy, 1971), vol. 2.

    Google Scholar 

  6. J. J. Moreau, Ann. Inst. H. Poincaré Anal. Non Lin’eaire XXX, 1 (1989).

    Google Scholar 

  7. J. J. Moreau, in Powders & Grains 93 (Balkema, Rotterdam, 1993), p. 227.

    Google Scholar 

  8. F. Radjai, M. Jean, J. J. Moreau, and S. Roux, Phys. Rev. Lett. 77, 274 (1996a).

    Article  Google Scholar 

  9. F. Radjai, D. Wolf, S. Roux, M. Jean, and J. J. Moreau, in Friction, Arching and Contact Dynamics, edited by D. E. Wolf and P. Grassberger (World Scientific, Singapore, 1997).

    Google Scholar 

  10. S. Roux, in Physics of Dry Granular Media, edited by H. J. Herrmann, J.-P. Hovi, and S. Luding (Kluwer Academic Publishers, Dordrecht, 1998), p. 267.

    Google Scholar 

  11. J. H. Snoeijer, T. Vlugt, M. van Hecke, and W. van Saarloos, Phys. Rev. Lett. 92, 054302 (2004).

    Article  Google Scholar 

  12. F. Alonso-Marroquin and H. Herrmann, Phys. Rev. Lett. 92, 054301 (2004), cond-mat/0403065.

    Article  Google Scholar 

  13. R. García-Rojo and H. Herrmann, Granular matter 7, 109–118 (2005a), cond-mat 0404176.

    Article  MATH  Google Scholar 

  14. R. G.-R. S. McNamara and H. J. Herrmann, Phys. Rev. E 72, 021304 (2005).

    Article  Google Scholar 

  15. S. Luding, in Physics of dry granular media - NATO ASI Series E350, edited by H. J. Herrmann, J.-P. Hovi, and S. Luding (Kluwer Academic Publishers, Dordrecht, 1998), p. 285.

    Google Scholar 

  16. R. García-Rojo and H. Herrmann, Phys. Rev. E 72, 041302 (2005b).

    Article  Google Scholar 

  17. R. D. Mindlin, J. of Appl. Mech. 16, 259 (1949).

    MATH  MathSciNet  Google Scholar 

  18. P. A. Cundall and O. D. L. Strack, Géotechnique 29, 47 (1979).

    Article  Google Scholar 

  19. R. Olivera and L. Rothenburg, in Powders and Grains 2005, edited by H. H. R. García-Rojo and S. McNamara (Taylor and Francis, 2005), pp. 1223–1227.

    Google Scholar 

  20. O. R. Walton, in Particulate two-phase flow, edited by M. C. Roco (Butterworth-Heinemann, Boston, 1993), p. 884.

    Google Scholar 

  21. F. Radjai, L. Brendel, and S. Roux, Phys. Rev. E 54, 861 (1996b).

    Article  Google Scholar 

  22. S. McNamara and H. J. Herrmann (2004).

    Google Scholar 

  23. T. Unger, J. Kertész, and D. Wolf (2004), cond-mat/0403089.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

García-Rojo, R., McNamara, S., Herrmann, H.J. (2008). Influence of Contact Modelling on the Macroscopic Plastic Response of Granular Soils Under Cyclic Loading. In: Capriz, G., Mariano, P.M., Giovine, P. (eds) Mathematical Models of Granular Matter. Lecture Notes in Mathematics, vol 1937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78277-3_6

Download citation

Publish with us

Policies and ethics