A Memetic Algorithm for Binary Image Reconstruction

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4958)


This paper deals with a memetic algorithm for the reconstruction of binary images, by using their projections along four directions. The algorithm generates by network flows a set of initial images according to two of the input projections and lets them evolve toward a solution that can be optimal or close to the optimum. Switch and compactness operators improve the quality of the reconstructed images which belong to a given generation, while the selection of the best image addresses the evolution to an optimal output.


Compactness Operator Reconstruction Error Memetic Algorithm Quadratic Assignment Problem Black Pixel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anstee, R.P.: The network flows approach for matrices with given row and column sums. Discrete Mathematics 44, 125–138 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Medians of polyominoes: a property for the reconstruction. Int. J. Imaging Syst. Technol. 9, 69–77 (1998)CrossRefGoogle Scholar
  3. 3.
    Batenburg, J.K.: An evolutionary algorithm for discrete tomography. Discrete Applied Mathematics 151, 36–54 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chassery, J.-M., Montanvert, A.: Géométrie discrète en analyse d’images. Traité des Nouvelles Techonologies, Hermes (1991)zbMATHGoogle Scholar
  5. 5.
    Chrobak, M., Dürr, C.: Reconstructing hv-convex polyominoes from orthogonal projections. Information Processing Letters 69, 283–291 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Corne, D., Dorigo, M., Glover, F.: New ideas in optimization. McGraw-Hill, New York (1999)Google Scholar
  7. 7.
    Di Gesù, V., Valenti, C.: The stability problem and noise projections in discrete tomography. Journal of Visual Languages and Computing 15(5), 361–371 (2004)CrossRefGoogle Scholar
  8. 8.
    Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM 19(2), 248–264 (1972)zbMATHCrossRefGoogle Scholar
  9. 9.
    Frosini, A., Nivat, M., Vuillon, L.: An introductive analysis of periodical discrete sets from a tomographical point of view. Theoretical Computer Science 347(1–2), 370–392 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gale, D.: A theorem on flows in networks. Pacific J. Math. 7, 1073–1082 (1957)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Gardner, R.J., Gritzmann, P., Prangenberg, D.: On the computational complexity of reconstructing lattice sets from their X-rays. Discrete Mathematics 202, 45–71 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Herman, G.T., Kuba, A. (eds.): Discrete Tomography: Foundations, Algorithms, and Applications. Birkhäuser, Basel (1999)zbMATHGoogle Scholar
  13. 13.
    Kong, T.Y., Herman, G.T.: Tomographic equivalence and switching operations. In: Discrete Tomography: Foundations, Algorithms, and Applications, pp. 59–84. Birkhäuser, Basel (1999)Google Scholar
  14. 14.
    Kuba, A.: The reconstruction of two-directional connected binary patterns from their two orthogonal projections. Computer Vision, Graphics, and Image Processing 27, 249–265 (1984)CrossRefGoogle Scholar
  15. 15.
    Matej, S., Vardi, A., Herman, G.T., Vardi, E.: Binary Tomography Using Gibbs Priors. In: Discrete Tomography: Foundations, Algorithms, and Applications, pp. 191–212. Birkhäuser, Basel (1999)Google Scholar
  16. 16.
    Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Transactions on Evolutionary Computation 4(4), 337–352 (2000)CrossRefGoogle Scholar
  17. 17.
    Merz, P., Freisleben, B.: Memetic algorithms and the fitness landscape of the graph bi-partitioning problem. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 765–774. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech Concurrent Computation Program, C3P Report 826 (1989)Google Scholar
  19. 19.
    Ryser, H.J.: Combinatorial mathematics. The carus mathematical monographs, vol. 14, ch. 6, MAA (1963)Google Scholar
  20. 20.
    Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Canadian J. Math. 9, 371–377 (1957)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Wang, B., Zhang, F.: On the precise number of (0,1)-matrices in A(R,S). Discrete Mathematics 187, 211–220 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Zou, P., Zhou, Z., Chen, G., Yao, X.: A novel memetic algorithm with random multi-local-search: A case study of TSP. In: Proc. of Congress on Evolutionary Computation, vol. 2, pp. 2335–2340. IEEE Press, Los Alamitos (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Dipartimento di Matematica e Applicazioni 
  2. 2.Centro Interdipartimentale Tecnologie della ConoscenzaUniversità di PalermoItaly

Personalised recommendations