Skip to main content
  • 469 Accesses

Abstract

In Chapters 3 and 4, the multi-field theories of thermo-electro-elastic and thermomagneto-electro-elastic problems were presented. Applications of the theory to bone remodelling are described in this chapter. Bone is a kind of dynamically adaptable material. Like any other living system, it has mechanisms for repair and growth or remodelling, and mechanisms to feed its constituent parts and ensure that any materials needed for structural work are supplied to the correct area as and when required. These bone functions are performed via three types of bone cell: osteoblast, osteoclast, and osteocyte. Osteoblasts are cells that form new bone and are typically found lining bone surfaces that are undergoing extensive remodelling. Osteoclasts are large, multinucleated, bone-removing cells. Their function is to break down and remove bone material that is no longer needed or that has been damaged in some way. The third cell type is the osteocyte. Osteocytes, called the bone “sensor cells”, are responsible for sensing the physical environment to which the skeleton is subjected. Osteocytes are characterized by many protoplasmic processes, or dendrites, emanating from the cell body. These cell dendrites form a communication network with surrounding cells, other osteocytes, osteoblasts, and possibly osteoclasts, which passes the signals from the osteocytes that control the action of osteoblasts osteoclasts. The activities of these three cell populations, and numerous other biological and biochemical factors, are coordinated in a continuous process throughout our lives to maintain a strong, healthy skeleton system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fukada E, Yasuda I. On the piezoelectric effect of bone. J. phys. Soc. Japan, 1957, 12: 1158–1162.

    Article  Google Scholar 

  2. Fukada E, Yasuda I. piezoelectric effects in collagen. Jap. J. Appl. Phys., 1964, 3: 117–121.

    Article  Google Scholar 

  3. Kryszewski M. Fifty years of study of the piezoelectric properties of macromolecular structured biological materials. Acta Physica Polonica A, 2004, 105: 389–408.

    Google Scholar 

  4. Robiony M, Polini F, Costa F, et al. Piezoelectric bone cutting in multioiece maxillary osteotomies. J. Oral Maxillofac Surg., 2004, 62: 759–761.

    Article  Google Scholar 

  5. Qin Qinghua, Ye J Q. Thermolectroelastic solutions for internal bone remodeling under axial and transverse loads. Int. J. Solids Struct., 2004, 41: 2447–2460.

    Article  MATH  Google Scholar 

  6. Gjelsvik A. Bone remodelling and piezoelectricity—I. J. Biomech., 1973, 6:69–77.

    Article  Google Scholar 

  7. Williams W S, Breger L. Analysis of stress distribution and piezoelectric response in cantilever bending of bone and tendon. Ann. N.Y. Acad. Sci., 1974, 238: 121–130.

    Article  Google Scholar 

  8. Guzelsu N. A piezoelectric model for dry bone tissue. J. Biomech., 1978, 11: 257–267.

    Article  Google Scholar 

  9. Johnson M W, Williams W S, Gross D. Ceramic models for piezoelectricity in dry bone. J. Biomech., 1980, 13: 565–573.

    Article  Google Scholar 

  10. Demiray H. Electro-mechanical remodelling of bones. Int. J. Eng. Sci., 1983, 21:1117–1126.

    Article  MATH  MathSciNet  Google Scholar 

  11. Aschero G, Gizdulich P, Mango F, et al. Converse piezoelectric effect detected in fresh cow femur bone. J. Biomech., 1996, 29: 1169–1174.

    Article  Google Scholar 

  12. Aschero G, Gizdulich P, Mango F. Statistical characterization of piezoelectric coefficient d 23 in cow bone. J. Biomech., 1999, 32: 573–577.

    Article  Google Scholar 

  13. Fotiadis D I, Foutsitzi G, Massalas C V. Wave propagation in human long bones of arbitrary cross-section. Int. J. Eng. Sci., 2000, 38: 1553–1591.

    Article  Google Scholar 

  14. El-Naggar A M, Abd-Alla A M, Mahmoud S R. Analytical solution of electro-mechanical wave propagation in long bones. Appl. Mathe. Computation, 2001, 119: 77–98.

    Article  MATH  MathSciNet  Google Scholar 

  15. Ahmed S M, Abd-Alla A M. Electromechanical wave propagation in a cylindrical poroelastic bone with cavity. Appl. Mathe. Computation, 2002, 133: 257–286.

    Article  MATH  MathSciNet  Google Scholar 

  16. Silva C C, Thomazini D, Pinheriro A G, et al. Collagen-hydroxyapatite films: piezoelectric properties. Mat. Sci. Eng., 2001, B86:210–218.

    Article  Google Scholar 

  17. Qin Qinghua, Qu C Y, Ye J Q. Thermolectroelastic solutions for surface bone remodeling under axial and transverse loads. Biomaterials, 2005, 26: 6798–6810.

    Article  Google Scholar 

  18. Qu C Y. Research on the behaviour of bone surface remodelling (in Chinese). Tianjin: Tianjin University, 2005.

    Google Scholar 

  19. Mindlin R D. Equations of high frequency vibrations of thermopiezoelectric crystal plates. Int. J. Solids Struct., 1974, 10: 625–637.

    Article  MATH  Google Scholar 

  20. Cowin S C, Hegedus D H. Bone remodelling I: theory of adaptive elasticity. J. Elasticity, 1976, 6: 313–326.

    Article  MATH  MathSciNet  Google Scholar 

  21. Cowin S C, Van Buskirk W C. Internal bone remodeling induced by a medullary pin. J. Biomech., 1978, 11: 269–275.

    Article  Google Scholar 

  22. Hegedus D H, Cowin S C. Bone remodelling II: small strain adaptive elasticity. J. Elasticity, 1976, 6: 337–352.

    Article  MATH  MathSciNet  Google Scholar 

  23. Ye J Q. Laminated composite plates and shells: 3D modeling. London: Springer-Verlag, 2002.

    Google Scholar 

  24. Cowin S C, Buskirk W C V. Surface bone remodelling induced by a medullary pin. J. Biomech., 1979, 12: 269–276.

    Article  Google Scholar 

  25. Gao C F, Naotake N. Thermal-induced interfacial cracking of magneto-electroelastic materials. Int. J. Eng. Sci., 2004, 42: 1347–1360.

    Article  Google Scholar 

  26. Qu C Y, Qin Q H. Evolution of bone structure under axial and transverse loads. Struct. Eng. Mech., 2006, 24: 19–29.

    Google Scholar 

  27. Qu C Y, Qin Q H, Kang Y L. Thermomagnetoelectroelastic prediction of the bone surface remodeling under axial and transverse loads//Proc. of 9th International Conference on Inspection, Appraisal, Repairs & Maintenance of Structures, October 20–21, Fuzhou, China, 2005: 373–380.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Higher Education Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Thermo-electro-elastic bone remodelling. In: Macro-Micro Theory on Multifield Coupling Behavior of Heterogeneous Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78259-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78259-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78258-2

  • Online ISBN: 978-3-540-78259-9

Publish with us

Policies and ethics