Skip to main content

Homogenization theory for heterogeneous materials

  • Chapter
  • 536 Accesses

Abstract

In this chapter we discuss the characteristics of heterogeneous media, basic concepts, and methods of homogenization of microstructures of the materials. Because there is much literature on this topic, for example references [1, 2], the chapter presents a brief review of the current state and new developments of homogenization theory.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Du S Y, Wang B. Micromechanics of composite materials (in Chinese). Beijing: Science Press, 1998.

    Google Scholar 

  2. Yang Qingsheng. Microstructural mechanics and design of composites (in Chinese). Beijing: China Tiedao Publishing House, 2000.

    Google Scholar 

  3. Hashin Z. Analysis of composite materials—A survey. Journal of Applied Mechanics. 1983, 50:481–505.

    Article  MATH  Google Scholar 

  4. Havner K S. A discrete model for the prediction of subsequent yield surfaces in polycrystalline plasticity. Int. J. Solids Structures, 1971, 7:719–730.

    Article  MATH  MathSciNet  Google Scholar 

  5. Hassani B. A direct method to derive the boundary conditions of homogenization equation or symmetric cell. Comm. Numer. Meth. Engng., 1996, 12: 185–196.

    Article  MATH  MathSciNet  Google Scholar 

  6. Hassani B, Hinton E. A review of homogenization and topology optimization I, II. Computers and Structures, 1998, 69: 707–738.

    Article  MATH  Google Scholar 

  7. Yang Qingsheng, Becker W. A comparative investigation of different homogenization methods for prediction of the macroscopic properties of composites. CMES-Computer Modeling in Engineering & Science, 2004, 6: 319–332.

    MATH  Google Scholar 

  8. Hohe J, Becker W. An energetic homogenization procedure for the elastic properties of general cellular sandwich cores. Composites: Part B, 2001, 32: 185–197.

    Article  Google Scholar 

  9. Zienkiewicz O C, Tayloy R L. The finite element method. 4th ed. London: McGraw-Hill.

    Google Scholar 

  10. Cook R D. Finite element modeling for stress analysis. New York: John Wiley & Sons, 1995.

    MATH  Google Scholar 

  11. Hill R. Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids, 1963, 11: 357–372.

    Article  MATH  Google Scholar 

  12. Kroner E. Statistical Continuum Mechanics. Berlin: Springer, 1972.

    Google Scholar 

  13. Hazanov S. Hill condition and overall properties of composites. Archive of Applied Mechanics, 1998, 68: 385–394.

    Article  MATH  Google Scholar 

  14. Yang Qingsheng, Qin Q H. Modelling the macroscopic elasto-plastic properties of unidirectional composites reinforced by fibre bundles under transverse tension and shear loading. Materials Science & Engineering A, 2003, 344: 140–145.

    Article  Google Scholar 

  15. Yang Qingsheng, Qin Q H. Micro-mechanical analysis of composite materials by BEM. Engineering Analysis with Boundary Elements, 2004, 28: 919–926.

    Article  Google Scholar 

  16. Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. London, Ser. A, 1957, 241: 376–396.

    Article  MATH  MathSciNet  Google Scholar 

  17. Hill R. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids, 1965, 13: 213–222.

    Article  Google Scholar 

  18. Budiansky B. On the elastic moduli of some heterogeneous material. J. Mech. Phsy. Solids, 1965, 13: 223–227.

    Article  Google Scholar 

  19. Taya M, Chou T W. On two kinds of ellipsoidal inhomogeneities in an infinite elastic body: an application to a hybrid composite. Int. J. Solids Strct., 1981, 17: 553–563.

    Article  MATH  Google Scholar 

  20. Christensen R M, Lo K H. Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids, 1979, 27: 315–330.

    Article  MATH  Google Scholar 

  21. Norris A N. A differential scheme for the effective moduli of composites. Mech. of Materials, 1985, 4: 1–16.

    Article  Google Scholar 

  22. Hashin Z. The differential scheme and its application to cracked materials. J Mech Phys Solids, 1988, 36: 719–736.

    Article  MATH  MathSciNet  Google Scholar 

  23. Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Met., 1973, 21: 571–574.

    Article  Google Scholar 

  24. Weng G J. Some elastic properties of reinforced solids with special reference to isotropic matrix containing spherical inclusions. Int. J. Engng. Sci., 1984, 22: 845–856.

    Article  MATH  Google Scholar 

  25. Benveniste Y. A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Materials, 1987, 6: 147–157.

    Article  Google Scholar 

  26. Hashin Z, Shtrikman S. On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids, 1962, 10: 335–342.

    Article  MathSciNet  Google Scholar 

  27. Hashin Z, Shtrikman S. A variational approach to the theory of flastic behavior of multiphase materials. J Mech Phys Solids, 1963, 11: 127–140.

    Article  MATH  MathSciNet  Google Scholar 

  28. Kroner E. Bounds for Effective Elastic Moduli of Disordered Materials. J Mech Phys Solides, 1977, 25: 137–156.

    Article  Google Scholar 

  29. Walpole L J. On bounds for the overall elastic moduli of inhomogeneous systems. J Mech Phys Solids, 1966, 14: 151–162.

    Article  MATH  Google Scholar 

  30. Voigt W. On the relation between the elasticity constants of isotropic bodies. Ann. Phys. Chem., 1889, 274: 573–587.

    Google Scholar 

  31. Reuss A. Determination of the yield point of polycrystals based on the yield condition of single crystals (German). Z. Angew. Math. Mech. 1929, 9: 49–58.

    Article  MATH  Google Scholar 

  32. Bensoussan A, Lion J L, Papanicolaou G. Asymptotic analysis for periodic structures. Amsterdam: North Holland, 1978.

    MATH  Google Scholar 

  33. Sanchez-Palencia E. Non-hongeneous media and vibration theory. Lecture notes in Physics, 1980, 127.

    Google Scholar 

  34. Peng X, Cao J. A dual homogenization and finite element approach for material characterization of textile composites. Composites: Part B, 2002, 33: 45–56.

    Article  Google Scholar 

  35. Ghosh S, Lee K, Moorthy S. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model. Comput. Methods Appl. Mech. Engng., 1996, 132: 63–116.

    Article  MATH  Google Scholar 

  36. Mura T. Micromechanics of defects in solids. Dordrecht: Martin Nijhoff Publishers, 1987.

    Google Scholar 

  37. Nemat-Nasser S, Hori M. Micromechanics: overall properties of heterogeneous materials. Amsterdam: North Holland, 1993.

    MATH  Google Scholar 

  38. Hohe J, Becker W. Effective stress-strain relations for two dimensional cellular sandwich cores: homogenization, material models, and properties. Appl Mech Rev, 2002, 55(1): 61–87.

    Article  Google Scholar 

  39. Christensen R M. A critical evaluation for a class of micromechanics models. J Mech Phys Solids, 1990, 38:379–406.

    Article  Google Scholar 

  40. Chou T W, Nomura S, Taya M. A self-consistent approach to the elastic stiffness of short-fiber composites. J Composite Materials, 1980, 14: 178–188.

    Article  Google Scholar 

  41. Yang Qingsheng, Tang L M, Chen H R. Self-consistent finite element method: a new method for predicting effective properties of inclusion media. Finite Elements in Analysis and Design, 1994, 17:247–257.

    Article  MATH  Google Scholar 

  42. Tsai S W. Structural behavior of composite materials. NASA CR-71, 1964.

    Google Scholar 

  43. Yang Qingsheng, Becker W. Effective stiffness and microscopic deformation of an orthotropic plate containing arbitrary holes. Computers & Structures, 2004, 82: 2301–2307.

    Article  Google Scholar 

  44. Yang Qingsheng, Becker W. Numerical investigation for stress, strain and energy homogenization of orthotropic composite with periodic microstructure and non-symmetric inclusions. Computational Materials Science, 2004, 31:169–180.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Higher Education Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Homogenization theory for heterogeneous materials. In: Macro-Micro Theory on Multifield Coupling Behavior of Heterogeneous Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78259-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78259-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78258-2

  • Online ISBN: 978-3-540-78259-9

Publish with us

Policies and ethics