Computer Assisted Classification of Brain Tumors

  • Norbert Röhrl
  • José R. Iglesias-Rozas
  • Galia Weidl
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


The histological grade of a brain tumor is an important indicator for choosing the treatment after resection. To facilitate objectivity and reproducibility, Iglesias et al. (1986) proposed to use a standardized protocol of 50 histological features in the grading process.

We tested the ability of Support Vector Machines (SVM), Learning Vector Quantization (LVQ) and Supervised Relevance Neural Gas (SRNG) to predict the correct grades of the 794 astrocytomas in our database. Furthermore, we discuss the stability of the procedure with respect to errors and propose a different parametrization of the metric in the SRNG algorithm to avoid the introduction of unnecessary boundaries in the parameter space.


Support Vector Machine Brain Tumor Feature Space Histological Grade Learning Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BARLETT, PL. and MENDELSON, S. (2002): Rademacher and Gaussian Complexities: Risk Bounds and Structural Results. Journal of Machine Learning, 3, 463-482.Google Scholar
  2. COONS, SW., JOHNSON, PC., SCHEITHAUER, BW., YATES, AJ., PEARL, DK. (1997): Improving diagnostic accuracy and interobserver concordance in the classification and grading of primary gliomas. Cancer, 79, 1381-1393.CrossRefGoogle Scholar
  3. CRAMMER, K., GILAD-BACHRACH, R., NAVOT, A. and TISHBY A. (2003): Margin Analysis of the LVQ algorithm. In: Proceedings of the Fifteenth Annual Conference on Neural Information Processing Systems (NIPS). MIT Press, Cambridge, MA 462-469.Google Scholar
  4. HAMMER, B., STRICKERT, M., VILLMANN, T. (2005): On the generalization ability of GRLVQ networks. Neural Processing Letters, 21(2), 109-120.CrossRefGoogle Scholar
  5. IGLESIAS, JR., PFANNKUCH, F., ARUFFO, C., KAZNER, E. and CERVÓS-NAVARRO, J. (1986): Histopathological diagnosis of brain tumors with the help of a computer: mathe-matical fundaments and practical application. Acta. Neuropathol. , 71, 130-135.CrossRefGoogle Scholar
  6. KOHONEN, T., KANGAS, J., LAAKSONEN, J. and TORKKOLA, K. (1992): LVQ-PAK: A program package for the correct application of Learning Vector Quantization algo-rithms. In: Proceedings of the International Joint Conference on Neural Networks. IEEE, Baltimore, 725-730.Google Scholar
  7. KOHONEN, T. (1995): Self-Organizing Maps. Springer Verlag, Heidelberg.Google Scholar
  8. VAPNIK, V. (1995): The Nature of Statistical Learning Theory. Springer Verlag, New York, NY.zbMATHGoogle Scholar
  9. VILLMANN, T., HAMMER, B. and STRICKERT, M. (2002): Supervised neural gas for learning vector quantization. In: D. Polani, J. Kim, T. Martinetz (Eds.): Fifth German Workshop on Artificial Life. IOS Press, 9-18Google Scholar
  10. VILLMANN, T., SCHLEIF, F-M. and HAMMER, B. (2006): Comparison of Relevance Learning Vector Quantization with other Metric Adaptive Classification Methods.Neural Networks, 19(5), 610-622.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Norbert Röhrl
    • 1
  • José R. Iglesias-Rozas
    • 2
  • Galia Weidl
    • 1
  1. 1.Institut für Analysis, Dynamik und ModellierungUniversitÄt StuttgartStuttgartGermany
  2. 2.Institut für Pathologie, NeuropathologieKatharinenhospitalStuttgartGermany

Personalised recommendations