Advertisement

A Procedure to Estimate Relations in a Balanced Scorecard

  • Veit Köppen
  • Henner Graubitz
  • Hans-K. Arndt
  • Hans-J. Lenz
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

A Balanced Scorecard is more than a business model because it moves performance measurement to performance management. It consists of performance indicators which are inter-related. Some relations are hard to find, like soft skills. We propose a procedure to fully specify these relations. Three types of relationships are considered. For the function types inverse functions exist. Each equation can be solved uniquely for variables at the right hand side. By generating noisy data in a Monte Carlo simulation, we can specify function type and estimate the related parameters. An example illustrates our procedure and the corresponding results.

Keywords

Estimate Relation Balance Scorecard Bayesian Belief Network Soft Skill Economic Scenario 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABDI, H. (2007): Bonferroni and Sidak corrections for multiple comparisons. In: N.J. Salkind (Ed.): Encyclopedia of Measurement and Statistics. Thousand Oaks (CA): Sage: 103-107.Google Scholar
  2. AKKERMANS, H. and VAN OORSCHOT, KIM (2002): Developing a balanced scorecard with system dynamics in Proceeding of 2002 International System Dynamics Conference.Google Scholar
  3. BANKER, R. D. and Chang, H. and JANAKIRAMAN, S. N. and KONSTANS, C. (2004): A balanced scorecard analysis of performance metrics. in European Journal of Operational Research 154(2): 423-436.zbMATHCrossRefMathSciNetGoogle Scholar
  4. BLUMENBERG, STEFAN A. and HINZ, DANIEL J. (2006): Enhancing the Prognostic Power of IT Balanced Scorecards with Bayesian Belief Networks. In HICSS ’06: Pro-ceedings of the 39th Annual Hawaii International Conference on System Sciences IEEE Computer Society, Washington, DC, USAGoogle Scholar
  5. FORRESTER, J. W. (1961). Industrial Dynamics Waltham, MA: Pegasus Communications. FRIEDAG, H.R. and SCHMIDT, W. (2004): Balanced Scorecard. 2nd edition. Haufe, Planegg.Google Scholar
  6. ITTNER, C.D. and LARCKER, D.F. and RANDALL, T. (2003): Performance implications of strategic performance measurement in financial service firms". Accounting Organization and Society, 2nd edition. Haufe, Planegg.Google Scholar
  7. JOHNSON, T.H. and KAPLAN, R.S. (1987): Relevance lost: the rise and fall of management accounting . Harvard Business Press, Boston.Google Scholar
  8. KAPLAN, R.S. and NORTON, D.P. (1996): The Balanced Scorecard. Translating Strategy Into Action. Harvard Business School Press, Harvard.Google Scholar
  9. KÖPPEN, V. and LENZ, H.-J. (2006): A comparison between probabilistic and possibilistic models for data validation. In: Rizzi, A. & Vichi, M. (Eds.) Compstat 2006 U˝ Proceedings in Computational Statistics , Springer, Rome.Google Scholar
  10. LACHNIT, L. (1979): Systemorientierte Jahresabschlussanalyse. Betriebswirtschaftlicher Verlag Dr. Th. Gabler KG, Wiesbaden.Google Scholar
  11. MARR, B. (2004): Business Performance Measurement: Current State of the Art. Cranfield University, School of Management, Centre for Business Performance.Google Scholar
  12. NISSEN, V. (2006): Modelling Corporate Strategy with the Fuzzy Balanced Scorecard. In: Hüllermeier, E. et al. (Eds.): Proceedings Symposium on Fuzzy Systems in Computer Science FSCS 2006: 121- 138, Magdeburg.Google Scholar
  13. PREISSNER, A. (2002): Balanced Scorecard in Vertrieb und Marketing: Planung und Kon-trolle mit Kennzahlen, 2nd ed. Hanser Verlag, München, WienGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Veit Köppen
    • 1
  • Henner Graubitz
    • 2
  • Hans-K. Arndt
    • 2
  • Hans-J. Lenz
    • 1
  1. 1.Institut für Produktion, Wirtschaftsinformatik und Operations ResearchFreie Universität BerlinGermany
  2. 2.Arbeitsgruppe Wirtschaftsinformatik - ManagementinformationssystemeOtto-von-Guericke-Universität MagdeburgGermany

Personalised recommendations