Skip to main content

The Earth radiation budget, 20 years later (1985–2005)

  • Chapter
Global Climatology and Ecodynamics

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

  • 714 Accesses

Abstract

The Earth radiation budget at the top of the atmosphere is a key parameter which measures the energy exchange between the Earth’s climate system and space. It must be taken into account when constructing any climate model, whether that model is being used to describe the present climate, or whether it is being used to predict future changes in the climate, and whether those changes are natural or are due to the influence of human activities. We have already discussed Kirill Kondratyev’s initial seminal work on this subject in Chapter 1. In the present chapter we consider subsequent Soviet/Russian contributions to the study of the Earth radiation budget. In particular, this chapter describes a Soviet/Russian project ScaRaB (Seanner for Radiation Budget) which formed a bridge across the gap between two United States NASA (National Aeronautics and Space Administration) programs ERBE (Earth Radiation Budget Experiment) and CERES (Clouds and Earth Radiation Energy System).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barkstrom B.R., Harrison E.F., Smith G.L., Green R., Kibler J., and Cess, R.D. (1989). Earth Radiation Budget Experiment (ERBE) archival and April 1985 results. Bull. Amer. Meteor. Soc., 70, 1254–1262.

    Article  Google Scholar 

  • Bony S. and Duvel J.-Ph. (1994). Influence of the vertical structure of the atmosphere on the seasonal variation of precipitable water and greenhouse effect. J. Geophys. Res., 99, 12963–12980.

    Article  Google Scholar 

  • Bony S., Duvel J.-Ph., and Le Treut H. (1995). Observed dependence of the water vapor and clear-sky greenhouse effect on sea surface temperature: Comparison with climate warming experiments. Climate Dyn., 11, 307–320.

    Article  Google Scholar 

  • Briand V., Stubenrauch C.J., Rossow W.B., Walker A., and Holz R. (1997). Scene identification for ScaRaB data: The ISCCP approach. In: J.E. Haigh (ed.), Satellite Remote Sensing of Clouds and the Atmosphere. SPIE, Bellingham, WA, pp. 242–252.

    Chapter  Google Scholar 

  • Cess R.D., Potter G.L., Blanchet J.P., Boer G.J., Del Genio A.D., Déqué M., Dymnikov V., Galin V., Gates W.L., Ghan S.J. et al. (1990). Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16601–16615.

    Article  Google Scholar 

  • Charlock T.P., and Ramanathan V. (1985). The albedo field and cloud radiative forcing produced by a general circulation model with internally generated cloud optics. J. Atmos. Sci., 42, 1408–1429.

    Article  Google Scholar 

  • Chen J., Carlson B.E., and Del Genio A.D. (2002). Evidence for strengthening of the tropical general circulation in the 1990s. Science, 295, 838–840.

    Article  Google Scholar 

  • Coakley J.A., and Baldwin D.G. (1984). Toward the objective analysis of clouds from satellite imagery data. J. Climate Appl. Meteor., 23, 1065–1099.

    Article  Google Scholar 

  • Dinguirard M., Mueller J., Sirou F., and Tremas T. (1998). Comparison of ScaRaB ground calibration in the short wave and long wave domains. Metrologia, 35, 597–601.

    Article  Google Scholar 

  • Duvel J.-Ph., and Raberanto P. (2000). A geophysical crosscalibration approach for broadband channels: Application to the SeaRaB experiment. J. Atmos. Oceanic Technol., 17, 1609–1617.

    Article  Google Scholar 

  • Duvel J.-Ph., Bony S., and Le Treut H. (1997). Clear-sky greenhouse effect sensitivity to sea surface temperature changes: An evaluation of AMIP simulations. Climate Dyn., 13, 259–273.

    Google Scholar 

  • Duvel J.-Ph., Bouffiès-Cloché S., and Viollier M. (2000). Determination of shortwave earth reflectances from visible radiance measurements: Error estimate using ScaRaB data. J. Appl. Meteor., 39, 957–970.

    Article  Google Scholar 

  • Duvel J.-Ph., Viollier M., Raberanto P., Kandel R., Haeffelin M., Pakhomov L.A., Golovko V.A., Mueller J., and Stuhlmann R. (2001). The ScaRab-Resurs Earth Radiation Budget Dataset and first results. Bulletin of the American Meteorological Society, 82(7), 1397–1408.

    Article  Google Scholar 

  • Emanuel K.A. (2005). Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686–688.

    Article  Google Scholar 

  • Fouquart Y., Buriez J.C., Herman M., and Kandel R.S. (1990). The influence of clouds on radiation: A climate-modeling perspective. Rev. Geophys., 28, 145–166.

    Article  Google Scholar 

  • Golovko V.A. (2003). Global redistribution of Earth radiation budget components. Russ. J. Remote Sens., 6, 3–13 [in Russian].

    Google Scholar 

  • Golovko V.A. (2004). Diagnostic and prediction of spatial variation dynamics for outgoing longwave radiation of the Earth. Russ. J. Remote Sens., 5, 3–14 [in Russian].

    Google Scholar 

  • Golovko V.A. (2006). Mathematical modeling of hurricane activity based on radiance observations from space. Russ. J. Remote. Sens., 5, 12–37 [in Russian].

    Google Scholar 

  • Golovko V.A., and Kondranin T.V. (2005). Anomalous global redistribution of the Earth radiation budget components. Proceedings of the 31st International Symposium on Remote Sensing of Environment (31st ISRSE 2005). June 20–24, 2005. St. Petersburg. St. Petersburg University, St. Petersburg, pp. 1–4.

    Google Scholar 

  • Golovko V.A., and Kozoderov V.V. (2000). Earth radiation budget: New applications to study natural hazards from space. Russ. J. Remote Sens., 1, 29–41 [in Russian].

    Google Scholar 

  • Golovko V.A., Kozoderov V.V., and Ovchinnikov S.K. (2000). Earth radiation budget: New applications of ScaRaB data for natural hazards investigations. IRS 2000: Current Problems in Atmospheric Radiation: Proceedings of the International Radiation Symposium. July 24–29, 2000, Sankt-Petersburg. St. Petersburg University, St. Petersburg, pp. 13–516.

    Google Scholar 

  • Golovko V.A., Pakhomov L.A., and Uspensky A.B. (2003a). Earth radiation budget monitoring from METEOR-3 and RESURS-01 Satellites. Meteorology and Hydrology, 12, 56–73 [in Russian].

    Google Scholar 

  • Golovko V.A., Kozoderov V.V., and Kondranin T. V. (2003b). Mathematical modeling of anomalous natural phenomena using space data about Earth radiation budget components. Proceedings of the World Climate Change Conference (WCCC-2003), September 29–October 3, 2003, Moscow. Science, Moscow, pp. 491–492.

    Google Scholar 

  • Golovko V.A., Pakhomov L.A., and Uspensky A.B. (2003c). The research results of the Russian French scientific project for global monitoring of the Earth radiation budget from Russian satellites. Proceedings of the World Climate Change Conference (WCCC-2003). September 29–October 3, 2003, Moscow. Science, Moscow, pp. 401–402.

    Google Scholar 

  • Haeffelin M., Wielicki B., Duvel J.-Ph., Priestley K., and Viollier M. (2001). Intercalibration of CERES and ScaRaB Earth radiation budget datasets using temporally and spatially collocated radiance measurements. Geophys. Res. Lett., 28, 167–170.

    Article  Google Scholar 

  • Hansen J., Nazarenko L., Ruedy R., Sato M., Willis J., Del Genio A., Koch D., Lacis A., Lo K., Menon S., Novakov T., Perlwitz J., Russell G., Schmidt G. A., and Tausnev N. (2005). Earth’s energy imbalance: Confirmation and implications. Science, 308, 1431–1435.

    Article  Google Scholar 

  • Hartmann D.L., Ramanathan V., Berroir A., and Hunt G.E. (1986). Earth radiation budget data and climate research. Rev. Geophys., 24, 439–468.

    Article  Google Scholar 

  • House F.B., Gruber A., Hunt G.E., and Mecherikunnel A.T. (1986). History of satellite missions and measurements of the Earth Radiation Budget. Rev. Geophys., 24, 357–377.

    Article  Google Scholar 

  • Jacobowitz H., Soule H.V., Kyle H.L., and House F.B. (1984). The Earth Radiation Budget (ERB) experiment: An overview. J. Geophys. Res., 89, 5021–5038.

    Article  Google Scholar 

  • Kandel R.S. (1990). Satellite observations of the Earth radiation budget and clouds. Space Sci. Rev., 52, 1–32.

    Article  Google Scholar 

  • Kandel R., Viollier M., Raberanto P., Duvel J.-Ph., Pakhomov L.A., Golovko V.A., Trishchenko A.P., Mueller J., Raschke E., and Stuhlmann, R. (1998). The ScaRaB Earth Radiation Budget Dataset. Bulletin of the American Meteorological Society, 79(5), 765–783.

    Article  Google Scholar 

  • Kozoderov V.V. and Golovko V.A. (1999). Interpretation and analysis of the earth radiation budget components from space. Proceedings of Third International Scientific Conference on the Global Energy and Water Cycle, June 16–19, 1999. Beijing. China Meteorological Office, Beijing, pp. 173–174.

    Google Scholar 

  • Levitus S., Antonov J.I., Boyer T.P., and Stephens C. (2000). Warming of the world ocean. Science, 287, 2225–2229.

    Article  Google Scholar 

  • Li Z. and Trishchenko A. (1999). A study toward an improved understanding of the relationship between visible and shortwave albedo measurements. J. Atmos. Oceanic. Technol., 16, 347–360.

    Article  Google Scholar 

  • Liebmann B. and Smith C.A. (1996). Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277.

    Google Scholar 

  • Marchuk G.I., Kondratyev K.Ya., and Kozoderov V.V. (1988). The Earth Radiation Budget: Key Aspects. Science, Moscow, 224 pp.

    Google Scholar 

  • Monge J.L., Kandel R.S., Pakhomov L.A., and Adasko V.I. (1991). ScaRaB earth radiation budget scanning radiometer. Meteorologia, 28, 261–284.

    Article  Google Scholar 

  • Mueller J., Stuhlmann R., Raschke E., Monge J.L., Kandel R., Burkert P., and Pakhomov L.A. (1993). Solar ground calibration of ScaRaB preliminary results. In: D.K. Lynch (ed.). Passive Infrared Remote Sensing of Clouds and the Atmosphere. SPIE, Bellingham, WA, pp. 129–139.

    Chapter  Google Scholar 

  • Mueller J., Stuhlmann R., Becker R., Rasehke E., Monge J.L., and Burkert P. (1996). Ground-based calibration facility for the Scanner for Radiation Budget instrument in the solar spectral domain. Meteorologia, 32, 657–660.

    Article  Google Scholar 

  • Mueller J., Stuhlmann R., Becker R., Raschke E., Rinck H., Burkert P., Monge J.-L., Sirou F., Kandel R., Tremas T., and Pakhomov L.A. (1997). Ground characterization of the Scanner for Radiation Budget (ScaRaB) Flight Model I. J. Atmos. Oceanic Technol., 14, 802–813.

    Article  Google Scholar 

  • Ramanathan V., Cess R.D., Harrison E.F., Minnis P., Barkstrom B.R., Ahmad E., and Hartmann D. (1989). Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 57–63.

    Article  Google Scholar 

  • Raschke E., Vonder Haar T.H., Bandeen W.R., and Pasternak M. (1973). The annual radiation balance of the earth-atmosphere system during 1969–1970 from Nimbus-3 measurements. J. Atmos. Sci., 30, 341–364.

    Article  Google Scholar 

  • Raval A. and Ramanathan V. (1989). Observational determination of the greenhouse effect. Nature, 342, 758–761.

    Article  Google Scholar 

  • Stephens G.L. and Greenwald T.J. (1991). The Earth’s radiation budget and its relation to atmospheric hydrology, I: Observations of the clear sky greenhouse effect. J. Geophys. Res., 96, 15311–15324.

    Article  Google Scholar 

  • Stephens G.L., Campbell G.G., and Vonder Haar T.H. (1981). Earth radiation budgets measurements from satellites and their interpretation for climate modeling and studies. J. Geophys. Res., 86, 9739–9760.

    Article  Google Scholar 

  • Stowe L.L. (ed.) (1988). Report of the Earth Radiation Budget Requirements Review 1987. NOAA Tech. Rep. NESDIS-41. National Oceanic and Atmospheric Administration, Washington, D.C., 103 pp.

    Google Scholar 

  • Stubenrauch C.J., Duvel J.-Ph., and Kandel R.S. (1993). Determination of longwave anisotropic emission factors from combined broad-and narrow-band radiance measurements. J. Appl. Meteor., 32, 848–856.

    Article  Google Scholar 

  • Venegas, S.A. (2001). Statistical Methods for Signal Detection in Climate. University of Copenhagen, Copenhagen, Denmark. 96 pp.

    Google Scholar 

  • Viollier M., Kandel R., and Raberanto P. (1995). Inversion and space-time averaging algorithms for ScaRaB (Scanner for Earth Radiation Budget): Comparison with ERBE. Ann. Geophys., 13, 959–968.

    Article  Google Scholar 

  • von Storch H., Burger G., Schnur R., and von Storch J. (1995). Principal oscillation patterns: A review. J. Climate, 8, 377–400.

    Article  Google Scholar 

  • Waliser D.E. and Zhou W. (1997). Removing satellite equatorial crossing time biases from the OLR and HRC datasets. J. Climate, 10, 2125–2146.

    Article  Google Scholar 

  • Wielicki B.A., Barkstrom B.R., Harrison E.F., Lee III R.B., Smith G.L., and Cooper J.E. (1996). Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853–868.

    Article  Google Scholar 

  • Wielicki B.A., Wong T., Young D.F., Barkstrom B.R., Lee R.B., and Haeffelin M. (1999). Differences between ERBE and CERES tropical mean fluxes: ENSO, climate or calibration? (Preprints). Proceedings of the Tenth Conference on Atmospheric Radiation. June 28–July 2, 1999, Madison, WI. American Meteorological Society, Washington, D.C., pp. 48–51.

    Google Scholar 

  • Wielicki B.A., Wong T., Allan R.P., Slingo A., Kiehl J.T., Soden B.J., Gordon C.T., Miller A.J., Yang S.-K., Randall D.A., Robertson F., Susskind J., and Jacobowitz, H. (2002). Evidence for large decadal variability in the tropical mean radiative energy budget. Science, 295, 841–842.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

Golovko, V.A. (2009). The Earth radiation budget, 20 years later (1985–2005). In: Global Climatology and Ecodynamics. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78209-4_3

Download citation

Publish with us

Policies and ethics