Advertisement

Towards a Logical Reconstruction of CF-Induction

  • Yoshitaka Yamamoto
  • Oliver Ray
  • Katsumi Inoue
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4914)

Abstract

CF-induction is a sound and complete hypothesis finding procedure for full clausal logic which uses the principle of inverse entailment to compute a hypothesis that logically explains a set of examples with respect to a prior background theory. Currently, CF-induction computes hypotheses by applying combinations of several complex generalisation operators to an intermediate theory called a bridge formula. In this paper we propose an alternative approach whereby hypotheses are derived from a bridge formula using a single deductive operator and a single inductive operator. We show that our simplified procedure preserves the soundness and completeness of CF-induction.

Keywords

inverse entailment CF-induction generalisation operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Badea, L.: A Refinement Operator for Theories. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 1–14. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Cox, P.T., Pietrzykowski, T.: A Complete, Nonredundant Algorithm for Reversed Skolemization. Theoretical Computer Science 28(3), 239–261 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Doncescu, A., Inoue, K., Yamamoto, Y.: Knowledge Based Discovery in Systems Biology Using CF-Induction. In: Okuno, H.G., Ali, M. (eds.) IEA/AIE 2007. LNCS (LNAI), vol. 4570, pp. 395–404. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Inoue, K.: Linear Resolution for Consequence Finding. Artificial Intelligence 56(2-3), 301–353 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Inoue, K.: Induction as Consequence Finding. Machine Learning 55(2), 109–135 (2004)zbMATHCrossRefGoogle Scholar
  6. 6.
    Laird, P.D.: Learning from Good and Bad Data. Kluwer Academic Publishers, Dordrecht (1988)zbMATHGoogle Scholar
  7. 7.
    Lee, C.T.: A Completeness Theorem and Computer Program for Finding Theorems Derivable from Given Axioms. PhD thesis, Dept. of Electronic Eng. and Computer Sci., Univ. of California, Berkeley, CA (1967)Google Scholar
  8. 8.
    Midelfart, H.: A Bounded Search Space of Clausal Theories. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 210–221. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Muggleton, S.H.: Inverse Entailment and Progol. New Generation Computing 13(3-4), 245–286 (1995)CrossRefGoogle Scholar
  10. 10.
    Muggleton, S.H., Buntine, W.L.: Machine Invention of First Order Predicates by Inverting Resolution. In: Proc. of the 5th Int. Conf. on Machine Learning, pp. 339–352 (1988)Google Scholar
  11. 11.
    Muggleton, S.H., De Raedt, L.: Inductive Logic Programming: Theory and Methods. Logic Programming 19(20), 629–679 (1994)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Nienhuys-Cheng, S., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Plotkin, G.D.: A Further Note on Inductive Generalization. In: Machine Intelligence, vol. 6, pp. 101–124. Edinburgh University Press (1971)Google Scholar
  14. 14.
    Ray, O., Broda, K., Russo, A.M.: Hybrid Abductive Inductive Learning: a Generalisation of Progol. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 311–328. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Ray, O., Inoue, K.: Mode Directed Inverse Entailment for Full Clausal Theories. In: Proc. of the 17th Int. Conf. on Inductive Logic Programming ILP 2007. LNCS, vol. 4894. Springer, Heidelberg (to appear 2008)Google Scholar
  16. 16.
    Satoh, K., Uno, T.: Enumerating Maximal Frequent Sets Using Irredundant Dualization. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds.) DS 2003. LNCS (LNAI), vol. 2843, pp. 256–268. Springer, Heidelberg (2003)Google Scholar
  17. 17.
    Yamamoto, A.: Hypothesis Finding Based on Upward Refinement of Residue Hypotheses. Theoretical Computer Science 298, 5–19 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Yamamoto, A., Fronhöfer, B.: Hypotheses Finding via Residue Hypotheses with the Resolution Principle. In: Arimura, H., Sharma, A.K., Jain, S. (eds.) ALT 2000. LNCS (LNAI), vol. 1968, pp. 156–165. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yoshitaka Yamamoto
    • 1
  • Oliver Ray
    • 2
  • Katsumi Inoue
    • 1
    • 3
  1. 1.Department of InformaticsGraduate University for Advanced StudiesChiyoda-kuJapan
  2. 2.Department of Computer ScienceUniversity of BristolBristol BS8 1UBUnited Kingdom
  3. 3.National Institute of InformaticsChiyoda-kuJapan

Personalised recommendations