Skip to main content

Visual Navigation of Mobile Robot Using Optical Flow and Visual Potential Field

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4931))

Abstract

In this paper, we develop a novel algorithm for navigating a mobile robot using the visual potential. The visual potential is computed from an image sequence and optical flow computed from successive images captured by the camera mounted on the robot. We assume that the direction to the destination is provided at the initial position of the robot. Using the direction to the destination, the robot dynamically selects a local pathway to the destination without collision with obstacles. The proposed algorithm does no require any knowledge or environmental maps of the robot workspace. Furthermore, this algorithm uses only a monocular uncalibrated camera for detecting a feasible region of navigation, since we apply the dominant plane detection to detect the feasible region. We present the experimental results of navigation in synthetic and real environments. Additionally, we present the robustness evaluation of optical flow computation against lighting effects and various kinds of textures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarno, D., Kragic, D., Christensen, H.I.: Artificial potential biased probabilistic roadmap method. IEEE International Conference on Robotics and Automation 1, 461–466 (2004)

    Google Scholar 

  2. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12, 43–77 (1994)

    Article  Google Scholar 

  3. Barron, J., Klette, R.: Qunatitiative colour optical flow. International Conference on Pattern Recognition 4, 251–254 (2002)

    Google Scholar 

  4. Bouguet, J.-Y.: Pyramidal implementation of the Lucas Kanade feature tracker description of the algorithm. Intel Corporation, Microprocessor Research Labs, OpenCV Documents (1999)

    Google Scholar 

  5. Bur, A., et al.: Robot navigation by panoramic vision and attention guided features. In: International Conference on Pattern Recognition, pp. 695–698 (2006)

    Google Scholar 

  6. Conner, D.C., Rizzi, A.A., Choset, H.: Composition of local potential functions for global robot control and navigation. In: International Conference on Intelligent Robots and Systems, vol. 4, pp. 3546–3551 (2003)

    Google Scholar 

  7. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. of the ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  8. Guilherme, N.D., Avinash, C.K.: Vision for mobile robot navigation: A survey. IEEE Trans. on PAMI 24, 237–267 (2002)

    Google Scholar 

  9. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  10. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  11. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research 5, 90–98 (1986)

    Google Scholar 

  12. Lopez-Franco, C., Bayro-Corrochano, E.: Omnidirectional vision and invariant theory for robot navigation using conformal geometric algebra. In: International Conference on Pattern Recognition, pp. 570–573 (2006)

    Google Scholar 

  13. Lopez-de-Teruel, P.E., Ruiz, A., Fernandez, L.: Efficient monocular 3d reconstruction from segments for visual navigation in structured environments. In: International Conference on Pattern Recognition, pp. 143–146 (2006)

    Google Scholar 

  14. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)

    Google Scholar 

  15. Maddalena, L., Petrosino, A.: A self-organizing approach to detection of moving patterns for real-time applications. In: Second International Symposium on Brain, Vision, and Artificial Intelligence, pp. 181–190 (2007)

    Google Scholar 

  16. Mallot, H.A., et al.: Inverse perspective mapping simplifies optical flow computation and obstacle detection. Biological Cybernetics 64, 177–185 (1991)

    Article  MATH  Google Scholar 

  17. Mileva, Y., Bruhn, A., Weickert, J.: Illumination-robust variational optical flow with photometric invarinats. In: DAGM-Symposium, pp. 152–162 (2007)

    Google Scholar 

  18. Nagel, H.-H., Enkelmann, W.: An investigation of smoothness constraint for the estimation of displacement vector fields from image sequences. IEEE Trans. on PAMI 8, 565–593 (1986)

    Google Scholar 

  19. Ohnishi, N., Imiya, A.: Featureless robot navigation using optical flow. Connection Science 17, 23–46 (2005)

    Article  Google Scholar 

  20. Ohnishi, N., Imiya, A.: Dominant plane detection from optical flow for robot navigation. Pattern Recognition Letters 27, 1009–1021 (2006)

    Article  Google Scholar 

  21. Ohnishi, N., Imiya, A.: Navigation of nonholonomic mobile robot using visual potential field. In: International Conference on Computer Vision Systems (2007)

    Google Scholar 

  22. Ohnishi, N., Imiya, A.: Corridor navigation and obstacle avoidance using visual potential for mobile robot. In: Canadian Conference on Computer and Robot Vision, pp. 131–138 (2007)

    Google Scholar 

  23. Shimoda, S., Kuroda, Y., Iagnemma, K.: Potential field navigation of high speed unmanned ground vehicles on uneven terrain. In: IEEE International Conference on Robotics and Automation, pp. 2839–2844 (2005)

    Google Scholar 

  24. Stemmer, A., Albu-Schaffer, A., Hirzinger, G.: An analytical method for the planning of robust assembly tasks of complex shaped planar parts. In: IEEE International Conference on Robotics and Automation, pp. 317–323 (2007)

    Google Scholar 

  25. Tews, A.D., Sukhatme, G.S., Matarić, M.J.: A multi-robot approach to stealthy navigation in the presence of an observe. In: IEEE International Conference on Robotics and Automation, pp. 2379–2385 (2004)

    Google Scholar 

  26. Valavanis, K., et al.: Mobile robot navigation in 2D dynamic environments using an electrostatic potential field. IEEE Trans. on Systems, Man, and Cybernetics 30, 187–196 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerald Sommer Reinhard Klette

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohnishi, N., Imiya, A. (2008). Visual Navigation of Mobile Robot Using Optical Flow and Visual Potential Field. In: Sommer, G., Klette, R. (eds) Robot Vision. RobVis 2008. Lecture Notes in Computer Science, vol 4931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78157-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78157-8_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78156-1

  • Online ISBN: 978-3-540-78157-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics