Skip to main content

Camera Self-calibration under the Constraint of Distant Plane

  • Conference paper
Robot Vision (RobVis 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4931))

Included in the following conference series:

Abstract

Kruppa equation based camera self-calibration is one of the classical problems in computer vision. Most state-of-the-art approaches directly solve the quadratic constraints derived from Kruppa equations, which are computationally intensive and difficult to obtain initial values. In this paper, we propose a new initialization algorithm by estimating the unknown scalar in the equation, thus the camera parameters can be computed linearly in a closed form and then refined iteratively via global optimization techniques. We prove that the scalar can be uniquely recovered from the infinite homography and propose a practical method to estimate the homography from a physical or virtual plane located at a far distance to the camera. Extensive experiments on synthetic and real images validate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, M., Zisserman, A., Hartley, R.: Self-calibration from image triplets. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 3–16. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  2. Chandraker, M., et al.: Autocalibration via rank-constrained estimation of the absolute quadric. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  3. Faugeras, O.D., Luong, Q.T., Maybank, S.J.: Camera self-calibration: Theory and experiments. In: European Conference on Computer Vision, pp. 321–334 (1992)

    Google Scholar 

  4. Hartley, R.: Self-calibration from multiple views with a rotating camera. In: European Conference on Computer Vision, pp. A: 471–478 (1994)

    Google Scholar 

  5. Hartley, R.: Self-calibration of stationary cameras. International Journal of Computer Vision 22(1), 5–23 (1997)

    Article  Google Scholar 

  6. Hartley, R.: Kruppa’s equations derived from the fundamental matrix. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 133–135 (1997)

    Article  MathSciNet  Google Scholar 

  7. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  8. Hemayed, E.: A survey of camera self-calibration. In: IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 351–357 (2003)

    Google Scholar 

  9. Heyden, A., Åström, K.: Euclidean reconstruction from image sequences with varying and unknown focal length and principal point. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 438–443 (1997)

    Google Scholar 

  10. Heyden, A., Åström, K.: Minimal conditions on intrinsic parameters for euclidean reconstruction. In: Asian Conference on Computer Vision, pp. 169–176 (1998)

    Google Scholar 

  11. Knight, J., Zisserman, A., Reid, I.: Linear auto-calibration for ground plane motion. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. I: 503–510 (2003)

    Google Scholar 

  12. Lei, C., et al.: A new approach to solving Kruppa equations for camera self-calibration. In: International Conference on Pattern Recognition, pp. 308–311 (2002)

    Google Scholar 

  13. Luong, Q., Faugeras, O.: Self-calibration of a moving camera from point correspondences and fundamental matrices. International Journal of Computer Vision 22(3), 261–289 (1997)

    Article  Google Scholar 

  14. Ma, S.: A self-calibration technique for active vision systems. IEEE Transactions on Robotics and Automation 12(1), 114–120 (1996)

    Article  Google Scholar 

  15. Malis, E., Cipolla, R.: Camera self-calibration from unknown planar structures enforcing the multiview constraints between collineations. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1268–1272 (2002)

    Article  Google Scholar 

  16. Maybank, S., Faugeras, O.: A theory of self-calibration of a moving camera. International Journal of Computer Vision 8(2), 123–151 (1992)

    Article  Google Scholar 

  17. Pollefeys, M., Gool, L.J.V., Proesmans, M.: Euclidean 3D reconstruction from image sequences with variable focal lenghts. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 31–42. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  18. Pollefeys, M., Koch, R., Van Gool, L.: Self-calibration and metric reconstruction in spite of varying and unknown intrinsic camera parameters. International Journal of Computer Vision 32(1), 7–25 (1999)

    Article  Google Scholar 

  19. Pollefeys, M., Van Gool, L.: Stratified self-calibration with the modulus constraint. IEEE Trans. Pattern Anal. Mach. Intell. 21(8), 707–724 (1999)

    Article  Google Scholar 

  20. Ronda, J., Valdes, A., Jaureguizar, F.: Camera autocalibration and horopter curves. International Journal of Computer Vision 57(3), 219–232 (2004)

    Article  Google Scholar 

  21. Seo, Y., Heyden, A.: Auto-calibration by linear iteration using the DAC equation. Image and Vision Computing 22(11), 919–926 (2004)

    Article  Google Scholar 

  22. Triggs, B.: Autocalibration and the absolute quadric. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 609–614 (1997)

    Google Scholar 

  23. Tsai, R.: An efficient and accurate camera calibration technique for 3-D machine vision. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 364–374 (1986)

    Google Scholar 

  24. Valdés, A., Ronda, J., Gallego, G.: The absolute line quadric and camera autocali-bration. International Journal of Computer Vision 66(3), 283–303 (2006)

    Article  Google Scholar 

  25. Xu, G., Sugimoto, N.: Algebraic derivation of the Kruppa equations and a new algorithm for self-calibration of cameras. Journal of the Optical Society of America-A 16(10), 2419–2424 (1999)

    Article  MathSciNet  Google Scholar 

  26. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  27. Zhong, H., Hung, Y.: Self-calibration from one circular motion sequence and two images. Pattern Recognition 39(9), 1672–1678 (2006)

    Article  MATH  Google Scholar 

  28. Zhong, Y., Zhang, H.: Control point based semi-dense matching. In: Asian Conference on Computer Vision, pp. 374–379 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerald Sommer Reinhard Klette

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, G., Wu, Q.M.J., Zhang, W. (2008). Camera Self-calibration under the Constraint of Distant Plane. In: Sommer, G., Klette, R. (eds) Robot Vision. RobVis 2008. Lecture Notes in Computer Science, vol 4931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78157-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78157-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78156-1

  • Online ISBN: 978-3-540-78157-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics