Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Key Points

99mTechnechium labelled methylene diphosphonate (99mTc-MDP) bone scan:

• Detects bone metabolism

• Is a non-specific imaging modality

• Remains one of the primary investigations in the evaluation of bone malignancy

• May show patterns of disease or disease distribution which may help to confirm a diagnosis

• Should always be viewed in conjunction with other imaging modalities

Positron emission tomography (PET) in combination with CT (PET/CT):

• Has an undefined role in the management of bone sarcoma

• The primary lesion must be avid for 18Florine labelled floro-2-deoxy-d-glucose (FDG) or other radiopharmaceutical for the application of this modality

• Knowledge of the limitations and normal variants is necessary in order to avoid false positive results

• Sufficient time delay is necessary between imaging and previous surgery or radiotherapy to differentiate between recurrence and inflammatory reaction

• May have a future role in demonstrating response to therapy and as a prognostic indicator in the management of bone sarcoma

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen SD, Saifuddin A (2003) Imaging of intra-articular osteoid osteoma. Clin Rad 58:845–852

    Article  CAS  Google Scholar 

  • Aoki J, Watanabe H, Shinozaki T et al. (1999) FDG-PET in differential diagnosis and grading of chondrosarcoma. JCAT 23:603–608

    CAS  Google Scholar 

  • Aoki J, Watanabe H, Shinozaki T et al. (2001) FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 219:774–777

    PubMed  CAS  Google Scholar 

  • Bhagia SM, Grimer RJ, Davies AM et al. (1997) Scintigramically negative skip metastasis in osteosarcoma. Eur Radiol 7:1446–1448

    Article  PubMed  CAS  Google Scholar 

  • Blau M, Ganatra R, Bender MA (1972) 18F-Fluoride for bone imaging. Semin Nucl Med 2:31–37

    Article  PubMed  CAS  Google Scholar 

  • Brenner W, Conrad EU, Eary JF (2004) FDG PET imaging for grading and prediction of outcome in chondrosarcoma patients. J Nucl Med Mol Imaging 31:189–195

    Google Scholar 

  • Buck AK, Herrmann K, Büschenfelde CM et al. (2008) Imaging bone and soft tissue tumors with the proliferation marker [18F]fluorodeoxythymidine. Clin Cancer Res 14:2970–2977

    Article  PubMed  CAS  Google Scholar 

  • Charkes ND (1980) Skeletal blood flow: implications for bone-scan interpretation. J Nucl Med 21:91–98

    PubMed  CAS  Google Scholar 

  • Chew FS, Hudson TM (1982) Radionuclide bone scanning of osteosarcoma: falsely extended uptake patterns. Am J Roentgenol 139:49–54

    CAS  Google Scholar 

  • Coleman RE, Mashiter G, Whitaker KB et al. (1988) Bone scan flare predicts successful systemic therapy for bone metastases. J Nucl Med 29:1354–1359

    PubMed  CAS  Google Scholar 

  • Constable AR, Cranage RW (1981) Recognition of the superscan in prostatic bone scintigraphy. Br J Radiol 54:122–125

    Article  PubMed  CAS  Google Scholar 

  • Crippa F, Seregni E, Agresti R et al. (1993) Bone scintigraphy in breast cancer: a ten-year follow-up study. J Nucl Biol Med 37:57–61

    PubMed  CAS  Google Scholar 

  • Daldrup-Link HE, Franzius C, Link TM et al. (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 177:229–236

    PubMed  CAS  Google Scholar 

  • Dimitrakopoulou-Strauss A, Strauss LG, Heichel T et al. (2002) The role of quantitative 18F-FDG PET in the differentiation of malignant and benign bone lesions. J Nucl Med 43:510–518

    PubMed  Google Scholar 

  • Epstein DA, Levin EJ (1978) Bone scintigraphy in hereditary multiple exostoses Am J Roentgenol 130:331–333

    CAS  Google Scholar 

  • Even-Sapir E, Metser U, Flusser G et al. (2004) Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison of 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 45:272–278

    PubMed  Google Scholar 

  • Feldman F, Van Heertum R, Saxena C et al. (2005) 18FDG- PET applications for cartilage neoplasms. Skeletal Radiol 34:367–374

    Article  PubMed  Google Scholar 

  • Franzius C, Sciuk J, Daldrup-Link HE et al. (2000) FDG PET for detection of osseous metastases from malignant primary bone tumours: comparison with bone scintigraphy. Eur J Nucl Med 27:1305–1311

    Article  PubMed  CAS  Google Scholar 

  • Franzius C, Daldrup-Link HE, Sciuk J et al. (2001) FDG- PET for detection of pulmonary metastases from malignant primary bone tumors: comparison with spiral CT. Ann Oncol 12:479–486

    Article  PubMed  CAS  Google Scholar 

  • Franzius C, Bielack S, Flege S et al. (2002a) Prognostic significance of 18F-FDG and 99mMDP uptake in primary osteosarcoma. J Nucl Med 43:1012–1017

    CAS  Google Scholar 

  • Franzius C, Daldrup-Link HE, Wagner-Bohn A et al. (2002b) FDG-PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. Ann Oncol 13:157–160

    Article  CAS  Google Scholar 

  • Gordon I, Hahn K, Fischer S (1993) Atlas of bone scintigraphy in the developing paediatric skeleton. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Grüning T, Franke WG (1999) Bone scan appearances in a case of Ollier’s disease. Clin Nucl Med 24:886–887

    Article  PubMed  Google Scholar 

  • Hain SF, Fogelman I (2002) Nuclear medicine studies in metabolic bone disease. Semin Musculoskelet Radiol 6:323–329

    Article  PubMed  Google Scholar 

  • Han J, Ryu JS, Shin MJ et al. (2000) Fibrous dysplasia with barely increased uptake on bone scan: a case report. Clin Nucl Med 25:785–788

    Article  PubMed  CAS  Google Scholar 

  • Hawkins DS, Rajendran JG, Conrad EU III et al. (2002) Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-d-glucose positron emission tomography. Cancer 94:3277–3284

    Article  PubMed  CAS  Google Scholar 

  • Hawkins DS, Schuetze SM, Butrynski JE et al. (2005) [F-18]-Fluorodeoxy-d-glucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol 23:8828–8833

    Article  PubMed  Google Scholar 

  • Helms CA (1987) Osteoid osteoma. The double density sign. Clin Orthop Relat Res 222:167–173

    PubMed  Google Scholar 

  • Helms CA, Hattner RS, Vogler JB III (1984) Osteoid osteoma: radionuclide diagnosis. Radiology 151:779–784

    PubMed  CAS  Google Scholar 

  • Iagaru A, Chawla S, Menendez L et al. (2006) 18F-FDG PET and PET/CT for detection of pulmonary metastases from musculoskeletal sarcomas. Nucl Med Commun 27:795–802

    Article  PubMed  Google Scholar 

  • Jackson RP, Reckling FW, Mants FA (1977) Osteoid osteoma and osteoblastoma. Similar histologic lesions with different natural histories. Clin Orthop Relat Res 128:303–313

    PubMed  Google Scholar 

  • Johnson GR, Zhuang H, Khan J et al. (2003) Role of positron emission tomography with fluorine-18-deoxyglucose in the detection of local recurrent and distant metastatic sarcoma. Clin Nucl Med 28:815–820

    Article  PubMed  Google Scholar 

  • Kaye M, Silverton S, Rosenthall L (1975) Technetium-99m-pyrophosphate: studies in vivo and in vitro J Nucl Med 16:40–45

    PubMed  CAS  Google Scholar 

  • Kole AC, Nieweg OE, Hoekstra HJ et al. (1998) Fluorine-18-fluorodeoxyglucose assessment of glucose metabolism in bone tumors. J Nucl Med 39:810–815

    PubMed  CAS  Google Scholar 

  • Langsteger W, Heinisch M, Fogelman I (2006) The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 36:73–92

    Article  PubMed  Google Scholar 

  • Lee FY, Yu J, Chang SS et al. (2004) Diagnostic value and limitations of fluorine-18 florodeoxyglucose positron emission tomography for cartilaginious tumors of bone. J Bone Joint Surg Am 86:2677–2685

    PubMed  Google Scholar 

  • Lodge MA, Lucas JD, Marsden PK et al. (1999) A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med 26:22–30

    Article  PubMed  CAS  Google Scholar 

  • Machida K, Makita K, Nishikawa J et al. (1986) Scintigramic manifestation of fibrous dysplasia. Clin Nucl Med 11:426–429

    Article  PubMed  CAS  Google Scholar 

  • Mandell GA, Contreras SJ, Conard K et al. (1998) Bone scintigraphy in the detection of chronic recurrent multifocal osteomyelitis. J Nucl Med 39:1778–1783

    PubMed  CAS  Google Scholar 

  • Murphey MD, Flemming DJ, Boyea SR et al. (1998) Enchondroma versus chondrosarcoma in the appendicular skeleton: differentiating features. Radiographics 18:1213–1237

    PubMed  CAS  Google Scholar 

  • Ozcan Z, Burak Z, Kumanlioğlu K et al. (1999) Assessment of chemotherapy-induced changes in bone sarcomas: clinical experience with 99Tcm-MDP three phase dynamic bone scintigraphy. Nucl Med Commun 20:41–48

    Article  PubMed  CAS  Google Scholar 

  • Picci P, Sangiorgi L, Rougraff BT et al. (1994) Relationship of chemotherapy-induced necrosis and surgical margins to local recurrence in osteosarcoma. J Clin Oncol 12:2699–2705

    PubMed  CAS  Google Scholar 

  • Reinartz P, Schaffeldt J, Sabri O et al. (2000) Benign versus malignant osseous lesions in the lumbar vertebrae: differentiation by means of bone SPECT. Eur J Nucl Med 27:721–726

    Article  PubMed  CAS  Google Scholar 

  • Robinson PJ (1992) Bone scanning. Br J Hosp Med 48:99–103

    CAS  Google Scholar 

  • Rosenthall L, Kaye M (1975) Technetium-99m-pyrophosphate kinetics and imaging in metabolic bone disease. J Nucl Med 16:33–39

    PubMed  CAS  Google Scholar 

  • Ryan PJ, Fogelman I (1994) Bone SPECT in osteoid osteoma of the vertebral lamina. Clin Nucl Med 19:144–145

    Article  PubMed  CAS  Google Scholar 

  • Ryan PJ, Fogelman I (1995) The bone scan: where are we now? Semin Nucl Med 25:76–91

    Article  PubMed  CAS  Google Scholar 

  • Schirrmeister H, Guhlmann A, Elsner K et al. (1999) Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 40:1623–1629

    PubMed  CAS  Google Scholar 

  • Schulte M, Brecht-Krauss D, Werner M et al. (1999) Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J Nucl Med 40:1637–1643

    PubMed  CAS  Google Scholar 

  • Schulte M, Brecht-Krauss D, Heymer B et al. (2000) Grading of tumors and tumor-like lesions of bone: evaluation by FDG PET. J Nucl Med 41:1695–1701

    PubMed  CAS  Google Scholar 

  • Serafini AN (1976) Paget’s disease of bone. Semin Nucl Med 6:47–58

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui AR, Tashjian JH, Lazarus K et al. (1981) Nuclear medicine studies in evaluation of skeletal lesions in children with histiocytosis X. Radiology 140:787–789

    PubMed  CAS  Google Scholar 

  • Smith FW (1998) The skeletal system. In: Sharp PE, Gemmell HG, Smith FW (eds) Practical nuclear medicine, 2nd edn. Oxford University Press, Oxford, pp 235–252

    Google Scholar 

  • Subramanian G, McAfee JG (1971) A new complex of 99mTc for skeletal imaging. Radiology 99:192–196

    PubMed  CAS  Google Scholar 

  • Subramanian G, McAfee JG, Bell EG et al. (1972) 99m Tc-labeled polyphosphate as a skeletal imaging agent. Radiology 102:701–704

    PubMed  CAS  Google Scholar 

  • Tamir R, Glanz I, Lubin E et al. (1983) Comparison of the sensitivity of 99mTc-methyl diphosphonate bone scan with the skeletal X-ray survey in multiple myeloma. Acta Haematol 69:236–242

    Article  PubMed  CAS  Google Scholar 

  • Tateishi U, Yamaguchi U, Seki K et al. (2007) Bone and soft-tissue sarcoma: preoperative staging with 18FDG PET/CT and conventional imaging. Radiology 245:839–847

    Article  PubMed  Google Scholar 

  • Trikha V, Gupta V, Kumar R ( 2003) Ollier’s disease: characteristic Tc-99m MDP scan features. Clin Nucl Med 28:56–57

    Article  PubMed  Google Scholar 

  • Valk PE, Bailey DL, Townsend DW et al. (2002) Positron emission tomography: basic science and clinical practice. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Volker T, Denecke T, Steffen I et al. (2007) Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 34:5435–5441

    Article  Google Scholar 

  • Wang K, Allen L, Fung E (2005) Bone scintigraphy in common tumors with osteolytic components. Clin Nucl Med 30:655–671

    Article  PubMed  CAS  Google Scholar 

  • Zhibin Y, Quanyong L, Libo C et al. (2004) The role of radionuclide bone scintigraphy in fibrous dysplasia of bone. Clin Nucl Med 29:177–180

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Green, R. (2009). Nuclear Medicine. In: Davies, A., Sundaram, M., James, S. (eds) Imaging of Bone Tumors and Tumor-Like Lesions. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77984-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77984-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77982-7

  • Online ISBN: 978-3-540-77984-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics