Skip to main content

Epitaxial Growth and Transport Properties of High-Mobility ZnO-Based Heterostructures

  • Chapter
  • 1335 Accesses

Part of the book series: Advances in Materials Research ((ADVSMATERIALS,volume 10))

Summary

Optimization of growth conditions is most important for extracting desired material properties, but it always requires time-consuming experiments. The temperature gradient method was applied for high-throughput optimization of the growth temperature by pulsed laser deposition to ZnO-based heterostructures. Surface morphology, photoluminescence, and electrical transport properties depend systematically on the growth temperature. Consequently, enhancement of two-dimensional growth, as detected from atomic force microscope images, can elucidate good physical properties, e.g., the observation of higher-order exciton emissions and highest electron mobility. By further optimizing the structure of heterojunction, we found growth conditions enabling the quantum Hall effect at the ZnO / MgxZn1−xO heterointerface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Yu et al., Solid State Commun. 103, 459 (1997); Z.K. Tang et al., Appl. Phys. Lett. 72, 3270 (1998)

    Google Scholar 

  2. D.M. Bagnall et al., Appl. Phys. Lett. 70, 2230 (1997)

    Article  ADS  CAS  Google Scholar 

  3. D.C. Look et al., Solid State Commun. 105, 399 (1998)

    Article  ADS  CAS  Google Scholar 

  4. E. Ohshima et al., J. Cryst. Growth 260, 166 (2004); K. Maeda, M. Sato, I. Niikura, T. Fukuda, Semicond. Sci. Technol. 20, S49 (2005)

    Article  ADS  CAS  Google Scholar 

  5. J. Nause, B. Nemeth, Semicond. Sci. Technol. 20, S45 (2005)

    Article  ADS  CAS  Google Scholar 

  6. D.C. Look, B. Claflin, Y.I. Alivov, S.J. Park, Phys. Stat. Sol. A 201, 2203 (2004)

    Article  ADS  CAS  Google Scholar 

  7. A. Ohtomo et al., Appl. Phys. Lett. 75, 2635 (1999)

    Article  ADS  CAS  Google Scholar 

  8. A. Tsukazaki et al., Appl. Phys. Lett. 83, 2784 (2003)

    Article  ADS  CAS  Google Scholar 

  9. A. Tsukazaki et al., Appl. Phys. Lett. 84, 3858 (2004)

    Article  ADS  CAS  Google Scholar 

  10. S.F. Chichibu et al., J. Appl. Phys. 99, 093505 (2006)

    Article  ADS  CAS  Google Scholar 

  11. A. Tsukazaki, A. Ohtomo, M. Kawasaki, Appl. Phys. Lett. 88, 152106 (2006)

    Article  ADS  CAS  Google Scholar 

  12. A. Tsukazaki et al., Nat. Mater. 4, 42 (2005); A. Tsukazaki et al., Jpn. J. Appl. Phys. 44, L643 (2005)

    Google Scholar 

  13. A. Ohtomo, A. Tsukazaki, Semicond. Sci. Technol. 20, S1 (2005)

    Article  ADS  CAS  Google Scholar 

  14. S. Shigemori, A. Nakamura, J. Ishihara, T. Aoki, J. Temmyo, Jpn. J. Appl. Phys. 43, L1088 (2004)

    Article  ADS  CAS  Google Scholar 

  15. T. Makino, Y. Segawa, M. Kawasaki, H. Koinuma, Semicond. Sci. Technol. 20, S78 (2005)

    Article  ADS  CAS  Google Scholar 

  16. T. Minami, Semicond. Sci. Technol. 20, S35 (2005)

    Article  ADS  CAS  Google Scholar 

  17. R.L. Hoffman, B.J. Norris, J.F. Wager, Appl. Phys. Lett. 82, 733 (2003)

    Article  ADS  CAS  Google Scholar 

  18. J. Nishii et al., Jpn. J. Appl. Phys. 42, L347 (2003)

    Article  ADS  CAS  Google Scholar 

  19. K. Koike et al., Jpn. J. Appl. Phys. 43, L1372 (2004)

    Article  ADS  CAS  Google Scholar 

  20. H. Tampo et al., Appl. Phys. Lett. 89, 132113 (2006)

    Article  ADS  CAS  Google Scholar 

  21. A. Tsukazaki, A. Ohtomo, T. Kita, Y. Ohno, H. Ohno, M. Kawasaki, Science 315, 1388 (2007)

    Google Scholar 

  22. E. Mollwo, in Semiconductors: Physics of II-VI and I-VII Compounds, Semimagnetic Semiconductors, vol. 17, ed. by O. Madelung, M. Schulz, H. Weiss (Springer, Berlin Heidelberg New York, 1982), p. 35

    Google Scholar 

  23. A. Uedono et al., J. Appl. Phys. 93, 2481 (2003)

    Article  ADS  CAS  Google Scholar 

  24. D.C. Look, J.W. Hemsky, J.R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999)

    Article  ADS  CAS  Google Scholar 

  25. D.C. Reynolds, C.W. Litton, T.C. Collins, Phys. Rev. 140, A1726 (1965)

    Article  ADS  Google Scholar 

  26. T. Ando, Y. Uemura, J. Phys. Soc. Jpn. 36, 959 (1974)

    Article  ADS  Google Scholar 

  27. T. Ando, A.B. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Tsukazaki, A., Ohtomo, A., Kawasaki, M. (2008). Epitaxial Growth and Transport Properties of High-Mobility ZnO-Based Heterostructures. In: Fujikawa, Y., Nakajima, K., Sakurai, T. (eds) Frontiers in Materials Research. Advances in Materials Research, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77968-1_5

Download citation

Publish with us

Policies and ethics