Skip to main content

Trends of Condensed Matter Science: A Personal View

  • Chapter
Frontiers in Materials Research

Part of the book series: Advances in Materials Research ((ADVSMATERIALS,volume 10))

Summary

A personal view on the development of the research activities in condensed matter sciences is presented, with special emphasis on the carrier doping into insulators, which have been classified into four categories: band insulators, Mott insulators, charge ordering, and Anderson localization. Depending on these parent insulators, doped carriers behave essentially differently as typically seen in semiconductors (doped band insulators) in contrast to high T c cuprates (doped Mott insulators) as bulk materials. Thanks to the establishment of experimental capabilities to probe local properties initiated by the success of scanning tunneling microscope (STM), more attentions are naturally being paid to local structures and associated electronic properties, spectroscopy in particular, which eventually govern material properties in macroscopic scales. Typical research targets from this viewpoint may include (1) strongly correlated electron systems, (2) surfaces, interfaces, and contacts, and (3) molecular assemblies. With more detailed explanation of the recent remarkable progress of the understanding of molecular solids belonging to above three, a hope is expressed that time is ripe to develop studies on bio-related materials, such as proteins and DNA, based on the well established technique in condensed matter science just as natural extensions of those on molecular solids. A tentative list of concrete research targets along this line of bio-material science has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.W. Anderson, in Twentieth Century Physics, ed. by L.M. Brown, A. Pais, B. Pippard (IOP, New York, 1995), p. 2017

    Google Scholar 

  2. P.W. Anderson, Science 177, 393 (1992)

    Google Scholar 

  3. J.M. Luttinger, W. Kohn, Phys. Rev. 97, 869 (1955)

    Article  MATH  ADS  CAS  Google Scholar 

  4. J.W. McClure, Phys. Rev. 119, 606 (1960)

    Article  ADS  CAS  Google Scholar 

  5. K.S. Novoselov et al., Science 306, 666 (2004)

    Google Scholar 

  6. S. Katayama, A. Kobayashi, Y. Suzumura, J. Phys. Soc. Jpn. 75, 054705 (2006); A. Kobayashi, S. Katayama, Y. Suzumura, H. Fukuyama, J. Phys. Soc. Jpn. 76, 034711 (2007)

    Article  ADS  CAS  Google Scholar 

  7. P.A. Wolff, J. Phys. Chem. Solids 25, 1057 (1964)

    Article  ADS  CAS  Google Scholar 

  8. P.W. Anderson, Phys. Rev. 102, 1008 (1958)

    Article  ADS  Google Scholar 

  9. E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979)

    Article  ADS  Google Scholar 

  10. N.F. Mott, Metal – Insulator Transition (Taylor and Francis, London, 1974)

    Google Scholar 

  11. T. Ando, A.B. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982)

    Article  ADS  CAS  Google Scholar 

  12. K.V. Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980)

    Article  ADS  Google Scholar 

  13. H.L. Stormer, A. Chang, D.C. Tsui, J.C.M. Hwang, A.C. Gossard, W. Wiegmann, Phys. Rev. Lett. 50, 1953 (1983)

    Article  ADS  CAS  Google Scholar 

  14. R.B. Laughlin, Phys. Rev. Lett. 52, 1583 (1984)

    Article  Google Scholar 

  15. T.F. Rosenbaum, K. Andres, G.A. Thomas, R.N. Bhatt, Phys. Rev. Lett. 45, 1723 (1980)

    Article  ADS  CAS  Google Scholar 

  16. E.A. Ekimov et al., Nature 428, 542 (2004)

    Google Scholar 

  17. Y. Takano et al., Appl. Phys. Lett. 85, 2851 (2004)

    Article  ADS  CAS  Google Scholar 

  18. T. Shirakawa et al., J. Phys. Soc. Jpn. 76, 014710 (2007)

    Article  ADS  CAS  Google Scholar 

  19. M. Hoesch et al., Phys. Rev. B 75, 140508 (2007)

    Article  ADS  CAS  Google Scholar 

  20. H. Fukuyama, J. Supercond. Novel Magn. 19, 201 (2006)

    Article  CAS  Google Scholar 

  21. C.K. Chiang, C.R. Fincher Jr., Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, A.G. MacDiarmid, Phys. Rev. Lett. 24, 1098 (1977)

    Article  ADS  Google Scholar 

  22. W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979)

    Article  ADS  CAS  Google Scholar 

  23. J.G. Bednorz, K.A. Muller, Z. Phys. B 64, 189 (1986)

    Article  ADS  CAS  Google Scholar 

  24. P.W. Anderson, The Theory of Superconductivity in the High-Tc Cuprates (Princeton University Press, Princeton, NJ, 1997)

    Google Scholar 

  25. B. Keimer et al., Phys. Rev. B 46, 14034 (1992)

    Article  ADS  CAS  Google Scholar 

  26. F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988)

    Article  ADS  CAS  Google Scholar 

  27. A. Damascelli, Z. Hussain, Z.X. Shen, Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  CAS  Google Scholar 

  28. H. Yasuoka, T. Imai, T. Shimizu, in Strong Correlation and Superconductivity ed. by H. Fukuyama, S. Maekawa, A.P. Malozemoff, (Springer, Berlin Heidelberg, New York, 1989), p. 254

    Google Scholar 

  29. Y. Wang, L. Li, N.P. Ong, Phys. Rev. B 73, 024510 (2006)

    Article  ADS  CAS  Google Scholar 

  30. M. Ogata, H. Fukuyama, Rep. Prog. Phys. 71, 036501 (2008)

    Article  ADS  CAS  Google Scholar 

  31. Y. Tokura (ed.), Colossal Magnetoresistive Oxides (Gordon and Breach Science, New York, 2000)

    Google Scholar 

  32. K. Aizu, J. Phys. Soc. Jpn. 27, 387 (1969)

    Article  ADS  CAS  Google Scholar 

  33. H. Schmid, Ferroelectrics 162, 317 (1994)

    Google Scholar 

  34. T. Kimura et al., Nature 426, 55 (2003)

    Google Scholar 

  35. H. Katsura, N. Nagaosa, A.V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005)

    Article  PubMed  ADS  CAS  Google Scholar 

  36. Y. Tokura, Science 312, 1481 (2006); J. Magn. Magn. Mater 310, 1145 (2007)

    Google Scholar 

  37. G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 50, 120 (1983)

    Article  ADS  CAS  Google Scholar 

  38. Y. Tokura, N. Nagaosa, Science 288, 462 (2000)

    Google Scholar 

  39. A. Ohtomo, H.Y. Huang, Nature 427, 423 (2004)

    Google Scholar 

  40. A. Tsukazaki et al., Science 315, 1388 (2007)

    Google Scholar 

  41. S. Thiel et al., Science 313, 1942 (2006)

    Google Scholar 

  42. G. Binasch et al., Phys. Rev. B 39, 4828 (1989)

    Article  ADS  CAS  Google Scholar 

  43. M.N. Baibich et al., Phys. Rev. Lett. 61, 2472 (1988)

    Article  PubMed  ADS  CAS  Google Scholar 

  44. T. Miyazaki, N. Tezuka, J. Magn. Magn. Mater. 139, 231 (1995)

    ADS  Google Scholar 

  45. S. Yuasa et al., Jpn. J. Appl. Phys. 43, 588 (2004)

    Article  ADS  CAS  Google Scholar 

  46. M.A. Read, J.M. Tour, Sci. Am. 282, 86 (2000)

    Article  Google Scholar 

  47. A. Inoue, Acta Mater. 48, 279 (2000)

    Article  CAS  Google Scholar 

  48. Y. Shirota, J. Mater. Chem. 15, 75 (2005)

    Article  CAS  Google Scholar 

  49. D.D. Eley, Nature 162, 819 (1948)

    Google Scholar 

  50. H. Akamatsu, H. Inokuchi, J. Chem. Phys. 18, 810 (1950)

    Article  ADS  Google Scholar 

  51. H. Akamatsu, H. Inokuchi, Y. Matsunaga, Nature 173, 168 (1954)

    Google Scholar 

  52. For a review, H. Mori, J. Phys. Soc. Jpn. 75, 051003 (2006)

    Article  ADS  CAS  Google Scholar 

  53. H. Tanaka et al., Science 291, 285 (2001); A. Kobayashi, Y. Okano, H. Kobayashi, J. Phys. Soc. Jpn. 75, 051002 (2006)

    Google Scholar 

  54. H. Tanaka et al., J. Am. Chem. Soc. 126, 1051 (2004)

    Google Scholar 

  55. S. Ishibashi et al., J. Phys. Soc. Jpn. 74, 843 (2005)

    Article  ADS  CAS  Google Scholar 

  56. T. Mori et al., Bull. Chem. Soc. Jpn. 57, 627 (1984)

    Article  CAS  Google Scholar 

  57. R. Kato, H. Kobayashi, A. Kobayashi, J. Am. Chem. Soc. 111, 5224 (1989); R. Kato, Bull. Chem. Soc. Jpn 73, 515 (2000)

    Article  CAS  Google Scholar 

  58. T. Miyazaki, K. Terakura, Y. Morikawa, T. Yamasaki, Phys. Rev. Lett. 74, 5104 (1995)

    Article  PubMed  ADS  CAS  Google Scholar 

  59. S. Uji et al., Phys. Rev. B 50, 15597 (1994)

    Article  ADS  CAS  Google Scholar 

  60. H. Kino, H. Fukuyama, J. Phys. Soc. Jpn. 65, 2158 (1996)

    Article  ADS  CAS  Google Scholar 

  61. H. Seo, H. Fukuyama, J. Phys. Soc. Jpn. 66, 1249 (1997)

    Article  ADS  CAS  Google Scholar 

  62. C. Hotta, J. Phys. Soc. Jpn. 72, 840 (2003)

    Article  ADS  CAS  Google Scholar 

  63. H. Seo, C. Hotta, H. Fukuyama, Chem. Rev. 104, 5005 (2004)

    Article  PubMed  CAS  Google Scholar 

  64. H. Fukuyama, J. Phys. Soc. Jpn. 75, 051001 (2006)

    Article  ADS  CAS  Google Scholar 

  65. P.W. Anderson, Mater. Res. Bull. 8, 153 (1973)

    Article  CAS  Google Scholar 

  66. Y. Shimizu et al., Phys. Rev. Lett. 91, 107001 (2003)

    Article  PubMed  ADS  CAS  Google Scholar 

  67. K. Kanoda, Hyperfine Interact. 104, 235 (1997); J. Phys. Soc. Jpn. 75, 051007 (2006)

    Article  ADS  CAS  Google Scholar 

  68. H. Seo, J. Phys. Soc. Jpn. 69, 805 (2000)

    Article  ADS  CAS  Google Scholar 

  69. N. Tajima et al., J. Phys. Soc. Jpn. 71, 1832 (2002); N. Tajima et al., J. Phys. Soc. Jpn. 75, 051010 (2006)

    Article  ADS  CAS  Google Scholar 

  70. A. Kobayashi et al., J. Phys. Soc. Jpn. 73, 3135 (2004)

    Article  ADS  CAS  Google Scholar 

  71. K. Kajita et al., J. Phys. Soc. Jpn. 61, 23 (1992)

    Article  ADS  CAS  Google Scholar 

  72. S. Uji, J.S. Brooks, J. Phys. Soc. Jpn. 75, 051014 (2006)

    Article  ADS  CAS  Google Scholar 

  73. T. Inabe, H. Tajima, Chem. Rev. 104, 5503 (2002)

    Article  CAS  Google Scholar 

  74. C. Hotta, M. Ogata, H. Fukuyama, Phys. Rev. Lett. 95, 216402 (2005)

    Article  PubMed  ADS  CAS  Google Scholar 

  75. I.H. Inoue et al., Phys. Rev. 45, 5828 (1992)

    Article  ADS  CAS  Google Scholar 

  76. H. Fukuyama, J. Phys. Soc. Jpn. 61, 3452 (1992)

    Article  ADS  CAS  Google Scholar 

  77. W. Suzuki et al., J. Am. Chem. Soc. 125, 1486 (2003)

    Article  PubMed  CAS  Google Scholar 

  78. C.C. Leznoff, A.B.P. Lever (ed.), Phthalocyanines, Properties and Applications (VCH Publishers, New York, 1993)

    Google Scholar 

  79. Coordinates around heme extracted from PDB entry 1A6M [private communications, from S. Shin]

    Google Scholar 

  80. S. Shin, private communications; Y. Harada et al., (to be submitted)

    Google Scholar 

  81. Y. Tanabe, S. Sugano, J. Phys. Soc. Jpn. 9, 753, 766 (1954); S. Sugano, Y. Tanabe, H. Kamimura, Pure and Applied Physics, vol. 33 (Academic Press, New York, 1970)

    Article  ADS  CAS  Google Scholar 

  82. A report of the Forum “Electronic Properties of Molecular Assemblies” (2006); Symposium on “Structure and Electronic Properties of Molecular Assemblies – Toward Bio-Materials Science” (RIKEN), (2007)

    Google Scholar 

  83. H. Kino et al., J. Phys. Soc. Jpn. 73, 2089 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Fukuyama, H. (2008). Trends of Condensed Matter Science: A Personal View. In: Fujikawa, Y., Nakajima, K., Sakurai, T. (eds) Frontiers in Materials Research. Advances in Materials Research, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77968-1_2

Download citation

Publish with us

Policies and ethics