Skip to main content

Applications of Domain Engineering in Ferroelectrics for Photonic Applications

  • Chapter
Ferroelectric Crystals for Photonic Applications

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 91))

  • 1291 Accesses

Abstract

The advent of the laser in the early 1960’s brought a surge of interest in techniques to modify, deflect, and change the frequency of laser light. These functions are extensively used today in such technological applications as displays, telecommunications, analog to digital conversion, printing, and data storage devices. Of the many competing technologies, optical devices fabricated in ferroelectric materials like lithium niobate and lithium tantalate offer a versatile solid-state platform to do all of these functions integrated seamlessly in the same device. By patterning these crystals into periodic gratings, the wavelength of light can be converted to different wavelengths through nonlinear optical effects to create new laser sources not readily available. If the domains are patterned into the shape of lenses or prisms, light passing through the crystal can be focused and deflected through the electro-optic effect. By precisely creating the domain structures in ferroelectric crystals, these functions and others can be combined in a single device offering large design flexibility, compactness, and utility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Gopalan, T.E. Mitchell et al., Interg. Ferroelectr. 22, 465 (1998)

    Article  Google Scholar 

  2. M.M. Fejer, G.A. Magel et al., IEEE J. Quantum Electron. 28, 3631 (1992)

    Article  Google Scholar 

  3. M. Yamada, M. Saitoh et al., Appl. Phys. Lett. 69, 3659 (1996)

    Article  ADS  Google Scholar 

  4. K.T. Gahagan, V. Gopalan et al., Proc. SPIE 3620, 374 (1999)

    Article  ADS  Google Scholar 

  5. M.E. Lines, A.M. Glass, in Principles and Applications of Ferroelectrics and Related Materials, pp. 59–126 (Clarendon Press, Oxford, 1977)

    Google Scholar 

  6. V. Gopalan, T.E. Mitchell et al., Appl. Phys. Lett. 72, 1981 (1998)

    Article  ADS  Google Scholar 

  7. S. Miyazawa, J. Appl. Phys. 50, 4599 (1979)

    Article  ADS  Google Scholar 

  8. S. Makio, F. Nitanda et al., Appl. Phys. Lett. 61, 3077 (1992)

    Article  ADS  Google Scholar 

  9. M. Fujimura, T. Suhara et al., Electron. Lett. 28, 721 (1992)

    Article  Google Scholar 

  10. F. Duan, M. Nai-Ben et al., Appl. Phys. Lett. 37, 607 (1980)

    Article  ADS  Google Scholar 

  11. V. Gopalan, T.E. Mitchell, J. Appl. Phys. 83, 941 (1998)

    Article  ADS  Google Scholar 

  12. V. Gopalan, T.E. Mitchell et al., Appl. Phys. Lett. 72, 1981 (1998)

    Article  ADS  Google Scholar 

  13. S. Kim, V. Gopalan et al., J. Appl. Phys. 90, 2949 (2001)

    Article  ADS  Google Scholar 

  14. L.-H. Peng, Y.-C. Fang et al., Appl. Phys. Lett. 74, 2070 (1999)

    Article  ADS  Google Scholar 

  15. Y.L. Chen, J.J. Xu et al., Opt. Commun. 188, 359 (2001)

    Article  ADS  Google Scholar 

  16. J.H. Ro, T.-H. Kim et al., J. Korean Phys. Soc. 40, 488 (2002)

    Google Scholar 

  17. L.E. Myers, R.C. Eckardt et al., J. Opt. Soc. Am. B 12, 2102 (1995)

    Article  ADS  Google Scholar 

  18. W.K. Burns, W. McElhanon et al., IEEE Photonics Technol. Lett. 6, 252 (1994)

    Article  ADS  Google Scholar 

  19. D.A. Scrymgeour, Y. Barad et al., Appl. Opt. 40, 6236 (2001)

    Article  ADS  Google Scholar 

  20. R.G. Batchko, G.D. Miller et al., Proc. SPIE 3610, 36 (1999)

    Article  ADS  Google Scholar 

  21. P. Baldi, C.G. Trevifio-Palacios et al., Electron. Lett. 31, 1350 (1995)

    Article  Google Scholar 

  22. C.Q. Xu, H. Okayama et al., Appl. Phys. Lett. 63, 1170 (1993)

    Article  ADS  Google Scholar 

  23. J.A. Armstrong, N. Bloembergen et al., Phys. Rev. 127, 1918 (1962)

    Article  ADS  Google Scholar 

  24. A. Yariv, Introduction to Optical Electronics, 2nd edn. (Holt Rinehart and Winston, New York, 1976)

    Google Scholar 

  25. G. Rosenman, A. Skliar et al., Ferroelectr. Rev. 1, 263 (1999)

    Google Scholar 

  26. M. Houe, P.D. Townsend, J. Phys. D 28, 1747 (1995)

    Article  ADS  Google Scholar 

  27. I. Shoji, T. Kondo et al., J. Opt. Soc. Am. B 14, 2268 (1997)

    Article  ADS  Google Scholar 

  28. T. Yamada, Group III condensed matter LiNbO3 family oxides. In Landolt–Bornstein, ed. by T. Mitsui, S. Nomura (Springer, Berlin, 1981), pp. 149–163

    Google Scholar 

  29. R.G. Batchko, G.D. Miller et al., OSA Tech. Digest Ser. 12, 75 (1998)

    Google Scholar 

  30. Y. Furukawa, K. Kitamura et al., Appl. Phys. Lett. 78, 1970 (2001)

    Article  ADS  Google Scholar 

  31. Y. Furukawa, K. Kitamura et al., J. Cryst. Grow. 197, 889 (1999)

    Article  ADS  Google Scholar 

  32. N.E. Yu, S. Kurimura et al., Jpn. J. Appl. Phys. 43, L1265 (2004)

    Article  ADS  Google Scholar 

  33. Y. Furukawa, K. Kitamura et al., Appl. Phys. Lett. 77, 2494 (2000)

    Article  ADS  Google Scholar 

  34. M. Katz, R.K. Route et al., Opt. Lett. 29, 1775 (2004)

    Article  ADS  Google Scholar 

  35. R. Sommerfeldt, L. Holtmann et al., Phys. Status Solidi A 106, 89 (1988)

    Article  ADS  Google Scholar 

  36. Y. Furukawa, K. Kitamura et al., Opt. Lett. 23, 1892 (1998)

    Article  ADS  Google Scholar 

  37. H. Ishizuki, I. Shoji et al., Appl. Phys. Lett. 82, 4062 (2003)

    Article  ADS  Google Scholar 

  38. R.G. Batchko, M.M. Fejer et al., Opt. Lett. 24, 1293 (1999)

    Article  ADS  Google Scholar 

  39. J.P. Meyn, M.M. Fejer, Opt. Lett. 22, 1214 (1997)

    Article  ADS  Google Scholar 

  40. J.-P. Meyn, C. Laue et al., Appl. Phys. B B73, 111 (2001)

    ADS  Google Scholar 

  41. T. Hatanaka, K. Nakamura et al., Opt. Lett. 25, 651 (2000)

    Article  ADS  Google Scholar 

  42. S.Y. Tu, A.H. Kung et al., Opt. Lett. 30, 2451 (2005)

    Article  ADS  Google Scholar 

  43. M. Maruyama, H. Nakajima et al., Appl. Phys. Lett. 89, 011101 (2006)

    Article  ADS  Google Scholar 

  44. H. Ishizuki, T. Taira, Opt. Lett. 30, 2918 (2005)

    Article  ADS  Google Scholar 

  45. K. Mizuuchi, A. Morikawa et al., Appl. Phys. Lett. 85, 3959 (2004)

    Article  ADS  Google Scholar 

  46. T. Fujiwara, M. Takahashi et al., Electron. Lett. 35, 499 (1999)

    Article  Google Scholar 

  47. V. Gopalan, M.C. Gupta, Appl. Phys. Lett. 68, 888 (1996)

    Article  ADS  Google Scholar 

  48. F. Juvalta, M. Jazbinsek et al., J. Opt. Soc. Am. B 23, 276 (2006)

    Article  ADS  Google Scholar 

  49. K. Kitamura, Y. Furukawa et al., Appl. Phys. Lett. 73, 3073 (1998)

    Article  ADS  Google Scholar 

  50. P.V. Lenzo, E.G. Spencer et al., Appl. Phys. Lett. 11, 23 (1967)

    Article  ADS  Google Scholar 

  51. S. Ganesamoorthy, S. Kumaragurubaran et al., Jpn. J. Appl. Phys. 44, 7008 (2005)

    Article  ADS  Google Scholar 

  52. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), p. 704

    Google Scholar 

  53. Y. Chiu, D.D. Stancil et al., Appl. Phys. Lett. 69, 3134 (1996)

    Article  ADS  Google Scholar 

  54. G. Rosenman, A. Skliar et al., Appl. Phys. Lett. 73, 3650 (1998)

    Article  ADS  Google Scholar 

  55. J.F. Lotspeich, IEEE Spectrum 45 (1968)

    Google Scholar 

  56. Y. Ninomiya, Electron. Commun. Jpn. 56, 108 (1973)

    Google Scholar 

  57. I.P. Kaminow, L.W. Stulz, IEEE J. Quantum Electron. 8, 633 (1975)

    Article  ADS  Google Scholar 

  58. Q. Chen, Y. Chiu et al., J. Lightwave Technol. 12, 1401 (1994)

    Article  ADS  Google Scholar 

  59. A.J. Boyland, G.W. Ross et al., Electron. Lett. 37, 585 (2001)

    Article  Google Scholar 

  60. G. Coppola, P. Ferraro et al., Opt. Express 11, 1212 (2003)

    Article  ADS  Google Scholar 

  61. S.J. Barrington, A.J. Boyland et al., Appl. Opt. 43, 1038 (2004)

    Article  ADS  Google Scholar 

  62. M.J. Kawas, D.D. Stancil et al., J. Lightwave Technol. 15, 1716 (1997)

    Article  ADS  Google Scholar 

  63. Y. Chiu, J. Zou et al., J. Lightwave Technol. 17, 108 (1999)

    Article  ADS  Google Scholar 

  64. J.C. Fang, M.J. Kawas et al., IEEE Photonics Technol. Lett. 11, 66 (1999)

    Article  ADS  Google Scholar 

  65. K.T. Gahagan, V. Gopalan et al., Appl. Opt. 38, 1186 (1999)

    Article  ADS  Google Scholar 

  66. K.T. Gahagan, D.A. Scrymgeour et al., Appl. Opt. 40, 5638 (2001)

    Article  ADS  Google Scholar 

  67. D.A. Scrymgeour, A. Sharan et al., Appl. Phys. Lett. 81, 3140 (2002)

    Article  ADS  Google Scholar 

  68. D.A. Scrymgeour, L. Tian et al., Appl. Phys. Lett. 86, 211113 (2005)

    Article  ADS  Google Scholar 

  69. E.H. Turner, Appl. Phys. Lett. 8, 303 (1966)

    Article  ADS  Google Scholar 

  70. J. Noda, N. Uchida et al., Appl. Phys. Lett. 25, 131 (1974)

    Article  ADS  Google Scholar 

  71. Y.Q. Lu, M. Xiao et al., Appl. Phys. Lett. 78, 1035 (2001)

    Article  ADS  Google Scholar 

  72. X.F. Chen, X.L. Zeng et al., J. Opt. A 5, 159 (2003)

    ADS  Google Scholar 

  73. I.P. Kaminow, L.W. Stulz, IEEE J. Quantum Electron. QE-11, 633 (1975)

    Article  ADS  Google Scholar 

  74. P.S. Tang, D.J. Towner et al., Appl. Phys. Lett. 85, 4615 (2004)

    Article  ADS  Google Scholar 

  75. R.A. Meyer, Appl. Opt. 11, 613 (1972)

    Article  ADS  Google Scholar 

  76. J.L. Jackel, C.E. Rice et al., Appl. Phys. Lett. 41, 607 (1982)

    Article  ADS  Google Scholar 

  77. R.V. Schmidt, I.P. Kaminow, Appl. Phys. Lett. 25, 458 (1974)

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scrymgeour, D.A. (2009). Applications of Domain Engineering in Ferroelectrics for Photonic Applications. In: Ferraro, P., Grilli, S., De Natale, P. (eds) Ferroelectric Crystals for Photonic Applications. Springer Series in Materials Science, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77965-0_14

Download citation

Publish with us

Policies and ethics